

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Dark Sectors at Low Energy Colliders.

April 23rd 2019, ALPS, Obergurgl, Austria Torben Ferber (<u>torben.ferber@desy.de</u>)

Dark Matter Evidence

Gravitational Lensing

Dark Matter

Cosmic Microwave Background

Dark Matter Properties

- We are rather **sure**:
 - Does interact gravitationally.
 - Does not strongly interact via electromagnetic or strong force.
 - Is **non-relativistic** (or cold).
 - Local density: $\rho_{local} \approx 0.4 \text{ GeV/cm}^3 \approx 1 \text{ proton mass per 5 M&Ms}$
- We are **not so sure**:
 - **Collision-less** (assumed in ACDM)?
 - Does it interact with the **weak force** and via the **Higgs** mechanism?

Weakly Interacting Massive Particles: WIMPs

•

→ correct present relict DM density $\Omega h^2 \simeq 0.1 \, \text{pb c} / \langle \sigma v \rangle$ Thermal averaging Hubble expansion Relative velocity in rate of the universe DM CMS

WIMP: Weakly Interacting Massive Particles

- Weak scale mass (GeV-TeV)
- Weak scale cross section

Perfect candidate: Lightest SUSY Particle

Annihilation cross section into SM particles

Weakly Interacting Massive Particles: WIMPs

From WIMPs to LDM

Since σ_{annihilation} ~ m_{DM²}/m_{med⁴}:
 Need new mediator between SM and
 Dark Sector if m_{DM} ≤ 2 GeV:
 Light Dark Matter (LDM)

New mediators

Only three sizeable interactions (or portals) to a Dark Sector, unsuppressed by the (possibly large) NP scale Λ .

Vector Portal: Massive A' mixes with SM γ via strength parameter ε. Scalar (Dark Higgs) and Neutrino (Sterile Neutrinos) Portals. Axion Portal: Massive ALP couples to SM bosons.

$$^{\mathrm{d})} = \mathcal{L}_{\mathrm{portals}} + \mathcal{O}\left(\frac{1}{\Lambda}\right)$$
$$S + \lambda S^{2}) - Y_{N}^{ij} \bar{L}_{i} H N_{j} + \mathcal{O}\left(\frac{1}{\Lambda}\right)$$

Intensity vs Energy

THIS ALWAYS BUGGED ME.

Dark Terminology

- Different terms for (basically) the same things
- I will use:
 - Hidden Sector = Secluded Sector = Dark Sector
 - Dark Photon = Hidden Photon = Heavy Photon = U-Boson = $Y_D = Y' = A'$, • couples via kinetic mixing $\alpha'/\alpha = \epsilon$, sometimes ϵ^2 or $\gamma(\epsilon) = \epsilon^2 \alpha_D (m_x/m_A)^4$
 - Relic Dark Matter = $\chi = \chi_1$ generally is the lightest DM particle •
 - Dark coupling $\alpha_D = q_D^2 / (4\pi)$

DESY. Dark Sectors at Low Energy Colliders (Torben Ferber)

Mediator decays

The e⁺e⁻ collider flagship: Belle II

Electromagnetic calorimeter (ECL):

CsI(TI) crystals

waveform sampling (energy, time, pulse-shape)

Vertex detectors (VXD):

- 2 layer DEPFET pixel detectors (PXD)*
- 4 layer double-sided silicon strip detectors (SVD)

Central drift chamber (CDC):

 $He(50\%):C_2H_6$ (50%), small cells, fast electronics

electrons e-

WLSF: wavelength-shifting fiber MPPC: multi-pixel photon counter

The e⁺e⁻ collider flagship: Belle II expected luminosity

The e⁺e⁻ collider flagship: First 2019 events in Belle II

DESY. Dark Sectors at Low Energy Colliders (Torben Ferber)

Golden modes of Dark Mediator decays

*not a minimal model

A: Visible Dark Photon searches

- Bump hunt for ee and $\mu\mu$ over smooth, but large SM backgrounds, avoid SM resonances.
- Hadronic final states are more challenging, analysed at KLOE
- **TT** channels have not been analysed yet (missing energy from neutrinos)
- So far all searches at low energy colliders hunt prompt A' decays: $T_{A'} \sim 1/(\epsilon^2 m_{A'})$

A: Visible Dark Photon searches

beyond 2021:

- NA62, SHiP, SeaQuest, ...
- Belle II 50 ab⁻¹
- LHCb e⁺e⁻

DESY. Dark Sectors at Low Energy Colliders (Torben Ferber)

Dark Photons at the LHC?

- Drell-Yan production pp→A'→µµ
 (some mild model-dep. near Z peak)
 - Dedicated LHCb analysis of 13TeV data (incl. meson decays). A future analysis of A'→ee from D* is a potential game-changer.
- $h \rightarrow Z^*Z_D$ (kinetic mixing) is complementary but not very sensitive.
- EW global fits.

 10^{-11}

10⁻¹²

B: Invisible Dark Photon searches

- Requirement:
 - Single photon trigger (E_{th} ≈ 1 GeV for E_{Beam} = 5.3 GeV)
 - Large solid angle coverage of calorimeter
 - Efficient outer detectors to veto calorimeter gaps
- SM backgrounds if one misses all but one γ :
 - Low mass A' (= high energy single γ): ee $\rightarrow \gamma \gamma$ and $ee \rightarrow \gamma \gamma \gamma$
 - High mass A' (= low energy single γ): $ee \rightarrow ee\gamma$

 $E_{Y} = ((2E_{Beam})^{2} - M_{A'^{2}}) / (2E_{Beam}))$

B: Invisible Dark Photon searches

Photon.

- y dark matter, g-2 anomaly...
- del: Dark matter particle x e boson A' as s-channel $_{A'} > 2m_{v})$

*Holdom, Phys. Lett B166, 1986

/ → "Kinetic Mixing"* of vith the SM photon

ee→3γ 1γ in ECL BWD gap 1y out of ECL acceptance

B: Invisible Dark Photon searches

BDX and **LDMX** have different beam option with different sensitivity. Plot for BDX@CEBAF(A), JLab and LDMX@DASEL, SLAC. not in the plots: BESIII (low energy e+e- near charm threshold) has (some) data with single photon triggers.

C: Invisible Z' searches

- Non-minimal vector portal:
 - Mediator Z' that couples to muons and taus but not to electrons ($L_{\mu}-L_{\tau}$)

C: Invisible Z' searches

Belle II expected sensitivity for the 2018 dataset (276pb⁻¹)

Systematic effects:

- analysis optimisation still undergoing -> details might change
- other systematic effects expected to be negligible

Track-triggers required

• trigger + tracking + PID + mass resolution systematics included ($\sim 10\%$) • possible additional systematics on background estimate not included (0-30 %)

D: Visible ALP searches

- Axion-like particles (ALPs) are pseudoscalars and couple to bosons. Unlike QCD Axions, ALPs have no relation between mass and coupling.
- Focus on coupling to photons (gayy)
- B-decays give access to coupling to charged bosons (need rather large datasets \gg 1ab⁻¹ to improve).
- No Belle or BaBar analysis yet.

ben Ferl DESY. **ƏS** Two of the photons overlap or merge. 10^{-1} Invisible 10⁻² P parameter space (figure adapted from ^{[6} 10. vith added s shown in dark blue ("SN decay"). 10⁻³ ch has already been exploited to 7 of limits cant ALP one arises from the energy loss in 10⁻⁴ he measured neutrino burst below bserved by **U** very light t green region labelled SN 1987a 10⁻⁵⊾ aking into **b** ${\rm few}\times 10^{-10}\,{\rm eV}$ a better limit can b the supernova can convert into pho ;netic field 10⁻⁶ nma-ray signal was ever detected atter SN 18 17, 24-28] $(1987a)^1$. For heavier ALPs this does not work because the 10⁻⁷⊾ ongly suppressed ALP decays outside of

10⁻⁸

 10^{-4}

10⁻³

with masses in the odetector or decays ever, anthe decay into two to be the sanalysed ity could be improvSingleinphoton final state.

D: Visible ALP searches

- Background from SM is large and partially peaking:
 - ee→ γγγ
 - $ee \rightarrow ee\gamma$ (early Belle II tracking was rather inefficient)
 - $ee \rightarrow \pi^{0}/\eta/\eta'\gamma$ (Form factors help)
 - $ee \rightarrow \omega\gamma, \omega \rightarrow \pi^{0}\gamma$

• No systematics

- Only dominant $ee \rightarrow \gamma \gamma \gamma$ background included
- 135fb^{-1} assumes no $\gamma\gamma$ trigger veto in the barrel

D: Visible and invisible ALP searches

What is next?

Belle II: We just started. Ultimately much better triggers, better detector, much higher statistics, and higher beam backgrounds.

Not covered today:

- Transition-tagged Y(2S, 3S) decays (Dark Higgs)
- DM or new mediators in B decays
- Displaced vertices
- Missing energy cascades
- **T** and hadronic final states

Summary

- Low energy colliders (Belle, BaBar, Belle II, ...) have a very broad and active DM program well beyond B physics
- Access to Dark Photons, Z', ALPs, light Higgs in simple and complex models (You have ideas/theories? Let's talk!)
- Orthogonal to direct searches. Not only sensitive to scalar DM.
- Belle II started physics data taking April 2019, first calibration run in 2018
- First publications with Belle II data planned for summer 2019 (using 2018 data)

Contact

DESY.

Deutsches Elektronen Synchrotron <u>www.desy.de</u> Torben Ferber <u>torben.ferber@desy.de</u> ORCID: 0000-0002-6849-0427