Higgs Physics Beyond the Standard Model

Tim Stefaniak

Deutsches Elektronen-Synchrotron DESY Email: tim.stefaniak@desy.de

Introduction

NEW PHYSICS IN THE HIGGS SECTOR?

New physics in the Higgs sector?

Possible BSM effects:

(*I*) Modifications of 125 GeV Higgs boson properties (couplings, decay rates, *CP*);

(II) Presence of additional(neutral/charged) scalar bosons;

(III) Presence of other new particles (e.g. SUSY particles) interacting with the Higgs boson.

⇒ Higgs sector is an exciting place to look for new physics!

 \cdot 125 GeV Higgs boson: measurements consistent with SM hypothesis.

				1 1	11		1
ATLAS Prelim	inary 👝	⊷ Tota	i —	Stat	÷	Svst.	SM
15 = 13 TeV, 24.5 - 75	1.8 fb ⁻¹						
$m_{H} = 125.09 \text{ GeV}, V _{P} = 71\%$	< 2.5				Tetel	· · · · ·	0
-sw					lotai	stat.	Syst.
99F YY	9			0.96	±0.14 (±0.11,	-0.08)
99F ZZ	P			1.04	-0.15 (±0.14,	± 0.05)
ggF WW	•			1.08	±0.19 (±0.11,	± 0.15)
ggFτt ⊨				0.96	+0.59 -0.52 (+ 0.37	+0.46 -0.36)
ggF comb.	þ.			1.04	±0.09 (± 0.07 ,	+0.07 -0.06)
VBF yy				1.39	+0.40 -0.35 (+0.31	+0.26 -0.19)
VBF ZZ				2.68	+0.98	+ 0.94 - 0.81	+0.27 -0.20)
VBF WW H				0.59	+0.38 -0.35 (+0.29	± 0.21)
VBF 🛛 🖂	-			1.16	+0.58 -0.53 (+0.42	+0.40 -0.35)
VBF bb		_	-	3.01	+1.67	+1.63	+0.39 -0.36)
VBF comb.				1.21	+0.24 -0.22 (+0.18	+0.16 -0.15)
VH γγ 😑				1.09	+0.58 -0.54 (+0.53	+0.25 -0.22)
VH ZZ				0.68	+1.20	+1.18	+0.10 -0.11)
VH bb	-			1.19	+0.27 -0.25 (+0.18	+0.20)
VH comb.				1.15	+0.24	±0.16,	+0.17
ttH+tH yy E	-			1.10	+0.41	+0.38	+0.19
ttH+tH VV				1.50	+0.59	+0.43	+0.41
ttH+tH 🕫 🛏				1.38	+1.18	+0.84	+0.75
ttH+tH bb	<u> </u>			0.79	+0.60	10.29	± 0.52)
ttH+tH comb.	-			1.21	+0.28	± 0.17 .	+0.20
			1		1		
<u> </u>					~		-
-20	2		4		6		8
Parameter normalized to SM value							

- \cdot 125 GeV Higgs boson: measurements consistent with SM hypothesis.
- Searches for additional Higgs bosons: only limits, limits, limits, ...

- \cdot 125 GeV Higgs boson: measurements consistent with SM hypothesis.
- Searches for additional Higgs bosons: only limits, limits, limits, ...

- \cdot 125 GeV Higgs boson: measurements consistent with SM hypothesis.
- Searches for additional Higgs bosons: only limits, limits, limits, ...

In addition: No signals in other new physics searches (SUSY, Dark Matter, ...), stringent limits on EDMs, ...

- \cdot 125 GeV Higgs boson: measurements consistent with SM hypothesis.
- Searches for additional Higgs bosons: only limits, limits, limits, ...

In addition: No signals in other new physics searches (SUSY, Dark Matter, ...), stringent limits on EDMs, ...

IMPLICATIONS OF THE HIGGS SIGNAL FOR NEW PHYSICS

Two approaches to assess the sensitivity to new physics:

1. Effective field theory (SMEFT): (in principle) model-independent; assumes NP is too heavy to be directly accessible at experiment.

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{d>4}$$

 \rightarrow consistent parametrization of deviations from SM expectation.

 $(\rightarrow K. Mimasu's talk)$

Renormalizable BSM models: model-dependent; no restrictions on validity, all effects can (in principle) be taken into account.
 → very predictive, possible complementarity to other observables.

In this talk, I will focus on concrete BSM models:

- (I) SM + scalar singlets,
- (II) SM + scalar doublet (2HDM, MSSM).

PUBLIC TOOLS FOR TESTING BSM MODELS WITH HIGGS RESULTS

HiggsBounds

Tests BSM Higgs sectors against exclusion limits from LEP, Tevatron and LHC Higgs searches

HiggsSignals

Tests BSM Higgs sectors against LHC (& Tevatron) Higgs signal rate and mass measurements

 $\Rightarrow \chi^2$ (sep. for rates and mass)

 \Rightarrow excluded/allowed at 95% C.L.

[Bechtle, Dercks, Heinemeyer, Klingl, TS, Weiglein, Wittbrodt]

Available at http://higgsbounds.hepforge.org.

Models with additional scalar singlets

ADDING ONE REAL SCALAR SINGLET

Scalar potential $(\Phi: SU(2)_L \text{ doublet, } S: SU(2)_L \text{ singlet})$

$$\mathcal{V} = -\mu_{\Phi}^2 \Phi^{\dagger} \Phi - \mu_{S}^2 S^2 + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 S^4 + \lambda_3 \Phi^{\dagger} \Phi S^2.$$

Imposed \mathbb{Z}_2 symmetry (S $\rightarrow -S)$, which is spontaneously broken if $\langle S \rangle \neq 0.$

- $\langle S \rangle = 0 \Rightarrow S$ is (highly constrained) DM candidate, no mixing with Φ ; Possible LHC signature: invisible Higgs decay, $h_{SM} \rightarrow SS$. [Feng, Profumo, Ubaldi '14; GAMBIT coll. '17] (\rightarrow P. Scott's talk)
- $\langle S \rangle \neq 0 \Rightarrow$ S and Φ mix (with sin α); Possible LHC Signatures:

1) Universally reduced signal strength of h_{SM} ,

2) New Higgs state in SM Higgs searches (strongly reduced μ),

3) Singlet-like Higgs decaying into SM-like Higgs, $h_{\rm S} \rightarrow h_{\rm SM} h_{\rm SM}$,

4) SM-like Higgs decaying into singlet-like Higgs, $h_{SM} \rightarrow h_S h_S$.

[Robens, TS '15,'16; id.+Ilnicka '18]

ADDING ONE REAL SCALAR SINGLET

Scalar potential $(\Phi: SU(2)_L \text{ doublet, } S: SU(2)_L \text{ singlet})$

$$\mathcal{V} = -\mu_{\Phi}^2 \Phi^{\dagger} \Phi - \mu_{S}^2 S^2 + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 S^4 + \lambda_3 \Phi^{\dagger} \Phi S^2.$$

Imposed \mathbb{Z}_2 symmetry (S $\rightarrow -S)$, which is spontaneously broken if $\langle S \rangle \neq 0.$

 $\begin{array}{ll} \langle S \rangle = 0 \Rightarrow & S \text{ is (highly constrained) DM candidate, no mixing with } \Phi; \\ & \text{Possible LHC signature: invisible Higgs decay, } h_{\text{SM}} \rightarrow SS. \\ & & [\text{Feng, Profumo, Ubaldi '14; GAMBIT coll. '17]} & (\rightarrow \text{P. Scott's talk}) \\ & \langle S \rangle \neq 0 \Rightarrow & S \text{ and } \Phi \text{ mix (with sin } \alpha); \text{Possible LHC Signatures:} \end{array}$

1) Universally reduced signal strength of h_{SM} ,

2) New Higgs state in SM Higgs searches (strongly reduced μ),

3) Singlet-like Higgs decaying into SM-like Higgs, $h_{\rm S} \rightarrow h_{\rm SM} h_{\rm SM}$,

4) SM-like Higgs decaying into singlet-like Higgs, $h_{SM} \rightarrow h_S h_S$. [Robens, TS '15,'16; *id*.+Ilnicka '18]

IMPACT OF HIGGS RATE MEASUREMENTS AT THE LHC

Singlet model:

(assume heavier Higgs at 125 GeV)

 $\kappa = \sin \alpha$, BR(H \rightarrow NP) = BR(h_{SM} \rightarrow h_{S}h_{S}).

 \Rightarrow Light Higgs $h_{\rm S}$ must have very reduced couplings $g/g_{\rm SM} = \cos \alpha \lesssim 0.26$.

Note: further constraints arise from LEP Higgs searches. Tim Stefaniak (DESY) | BSM Higgs physics | ALPS 2019 | 27 April 2019

ADDING ONE REAL SCALAR SINGLET

Scalar potential $(\Phi: SU(2)_L \text{ doublet, } S: SU(2)_L \text{ singlet})$

$$\mathcal{V} = -\mu_{\Phi}^2 \Phi^{\dagger} \Phi - \mu_{S}^2 S^2 + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 S^4 + \lambda_3 \Phi^{\dagger} \Phi S^2.$$

Imposed \mathbb{Z}_2 symmetry (S $\rightarrow -S)$, which is spontaneously broken if $\langle S \rangle \neq 0.$

- $\langle S \rangle = 0 \Rightarrow S$ is (highly constrained) DM candidate, no mixing with Φ ; Possible LHC signature: invisible Higgs decay, $h_{SM} \rightarrow SS$. [Feng, Profumo, Ubaldi '14]
- $\langle S \rangle \neq 0 \Rightarrow$ S and Φ mix (with sin α); Possible LHC Signatures: 1) Universally reduced signal strength of h_{SM} , 2) New Higgs state in SM Higgs searches (strongly reduced μ), 3) Singlet-like Higgs decaying into SM-like Higgs, $h_S \rightarrow h_{SM}h_{SM}$, 4) SM-like Higgs decaying into singlet-like Higgs, $h_{SM} \rightarrow h_S h_S$. [Robens, TS '15,'16; *id*.+llnicka '18]

ADDING ONE REAL SCALAR SINGLET

Scalar potential $(\Phi: SU(2)_L \text{ doublet, } S: SU(2)_L \text{ singlet})$

$$\mathcal{V} = -\mu_{\Phi}^2 \Phi^{\dagger} \Phi - \mu_{S}^2 S^2 + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 S^4 + \lambda_3 \Phi^{\dagger} \Phi S^2.$$

Imposed \mathbb{Z}_2 symmetry (S \rightarrow -S), which is spontaneously broken if $\langle S \rangle \neq 0.$

- $\langle S \rangle = 0 \Rightarrow$ S is (highly constrained) DM candidate, no mixing with Φ ; Possible LHC signature: invisible Higgs decay, $h_{SM} \rightarrow SS$. [Feng, Profumo, Ubaldi '14]
- $\langle S \rangle \neq 0 \Rightarrow$ S and Φ mix (with sin α); Possible LHC Signatures: 1) Universally reduced signal strength of h_{SM} , 2) New Higgs state in SM Higgs searches (strongly reduced μ), 3) Singlet-like Higgs decaying into SM-like Higgs, $h_S \rightarrow h_{SM}h_{SM}$, 4) SM-like Higgs decaying into singlet-like Higgs, $h_{SM} \rightarrow h_S h_S$. [Robens, TS '15,'16; *id*.+Ilnicka '18]

Resonant double Higgs production rates ((S) \neq 0)

After all constraints (Higgs signal rates and limits, M_W, EW precision observables, perturbativity of couplings, vacuum stability):

 $\Rightarrow \mathrm{BR}(h_{\mathrm{S}} \rightarrow h_{\mathrm{SM}}h_{\mathrm{SM}}) \lesssim (20 - 40)\%$

[Robens, TS '15,'16; *id*.+Ilnicka '18]

 \Rightarrow LHC searches for $pp \rightarrow H \rightarrow h_{SM}h_{SM}$ are slowly becoming sensitive.

For comparison: In SM, $\sigma_{14\text{TeV}}(pp \rightarrow h_{\text{SM}}h_{\text{SM}}) \simeq 33 \text{ fb.}$

[Dawson, Lewis, Robens, TS, Sullivan, *contr. to HH whitepaper (to appear)*] Tim Stefaniak (DESY) | BSM Higgs physics | ALPS 2019 | 27 April 2019 **Scalar potential** (Φ: *SU*(2)_L doublet, *S*, *X*: *SU*(2)_L singlets)

$$\mathcal{V} = \mu_{\Phi}^2 \Phi^{\dagger} \Phi + \mu_S^2 S^2 + \mu_X^2 X^2 + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 + \lambda_S S^4 + \lambda_X X^4 + \lambda_{\Phi S} \Phi^{\dagger} \Phi S^2 + \lambda_{\Phi X} \Phi^{\dagger} \Phi X^2 + \lambda_{S X} S^2 X^2.$$

Imposed $\mathbb{Z}_2\times\mathbb{Z}_2'$ symmetry, which is spontaneously broken by singlet vevs.

 \Rightarrow three \mathcal{CP} -even neutral Higgs bosons: h_1, h_2, h_3

Two interesting cases:

Case (a): $\langle S \rangle \neq 0, \langle X \rangle = 0 \Rightarrow X$ is DM candidate; **Case (b):** $\langle S \rangle \neq 0, \langle X \rangle \neq 0 \Rightarrow$ all scalar fields mix.

Again, Higgs couplings to SM fermions and bosons are *universally reduced by mixing*.

Scalar potential (Φ: *SU*(2)_L doublet, *S*, *X*: *SU*(2)_L singlets)

$$\mathcal{V} = \mu_{\Phi}^2 \Phi^{\dagger} \Phi + \mu_S^2 S^2 + \mu_X^2 X^2 + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 + \lambda_S S^4 + +\lambda_X X^4 + \lambda_{\Phi S} \Phi^{\dagger} \Phi S^2 + \lambda_{\Phi X} \Phi^{\dagger} \Phi X^2 + \lambda_{S X} S^2 X^2.$$

Imposed $\mathbb{Z}_2\times\mathbb{Z}_2'$ symmetry, which is spontaneously broken by singlet vevs.

 \Rightarrow three \mathcal{CP} -even neutral Higgs bosons: h_1, h_2, h_3

Two interesting cases:

Case (a): $\langle S \rangle \neq 0, \langle X \rangle = 0 \Rightarrow X$ is DM candidate; **Case (b):** $\langle S \rangle \neq 0, \langle X \rangle \neq 0 \Rightarrow$ all scalar fields mix.

Again, Higgs couplings to SM fermions and bosons are *universally reduced by mixing*.

HIGGS-TO-HIGGS DECAY SIGNATURES ($\langle S \rangle \neq 0$, $\langle X \rangle \neq 0$)

[Robens, TS, Wittbrodt (*in progress*)] Rich phenomenology of $h_i \rightarrow h_i h_k$ decays. Various possibilities:

- three mass hierarchies: M_1 , M_2 or $M_3 = 125$ GeV (with $M_1 \le M_2 \le M_3$),
- symmetric $(h_i \rightarrow h_j h_j)$ and asymmetric $(h_3 \rightarrow h_1 h_2)$ decays,
- cascade decays: $h_3 \rightarrow h_1h_2 \rightarrow h_1h_1h_1$ and $h_3 \rightarrow h_2h_2 \rightarrow h_1h_1h_1h_1$.
- \Rightarrow Benchmark scenarios suggested to LHC-HXSWG HH subgroup.

HIGGS-TO-HIGGS DECAY SIGNATURES ($\langle S \rangle \neq 0$, $\langle X \rangle \neq 0$)

[Robens, TS, Wittbrodt (*in progress*)] Rich phenomenology of $h_i \rightarrow h_i h_k$ decays. Various possibilities:

- three mass hierarchies: M_1 , M_2 or $M_3 = 125$ GeV (with $M_1 \le M_2 \le M_3$),
- symmetric $(h_i \rightarrow h_j h_j)$ and asymmetric $(h_3 \rightarrow h_1 h_2)$ decays,
- cascade decays: $h_3 \rightarrow h_1h_2 \rightarrow h_1h_1h_1$ and $h_3 \rightarrow h_2h_2 \rightarrow h_1h_1h_1h_1$.
- \Rightarrow Benchmark scenarios suggested to LHC-HXSWG HH subgroup.

 $pp \rightarrow h_3 \rightarrow h_{125}h_2$

HIGGS-TO-HIGGS DECAY SIGNATURES ($\langle S \rangle \neq 0$, $\langle X \rangle \neq 0$)

[Robens, TS, Wittbrodt (*in progress*)] Rich phenomenology of $h_i \rightarrow h_i h_k$ decays. Various possibilities:

- three mass hierarchies: M_1 , M_2 or $M_3 = 125$ GeV (with $M_1 \le M_2 \le M_3$),
- symmetric $(h_i \rightarrow h_j h_j)$ and asymmetric $(h_3 \rightarrow h_1 h_2)$ decays,
- cascade decays: $h_3 \rightarrow h_1h_2 \rightarrow h_1h_1h_1$ and $h_3 \rightarrow h_2h_2 \rightarrow h_1h_1h_1h_1$.
- \Rightarrow Benchmark scenarios suggested to LHC-HXSWG HH subgroup.

Models with an additional scalar doublet (2HDM, MSSM)

CP-conserving Two Higgs Doublet Model (2HDM)

2 complex $SU(2)_{L}$ doublets \Rightarrow 5 Higgs states h, H, A, H[±]

Higgs potential (general basis): $(\Phi_1, \Phi_2: SU(2)_L \text{ doublets})$

$$\begin{aligned} \mathcal{V} &= m_{11}^2 \Phi_1^{\dagger} \Phi_2 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + [\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.}] \end{aligned}$$

$$\mathbb{Z}_2$$
 symmetry $(\Phi_1 \rightarrow +\Phi_1, \Phi_2 \rightarrow -\Phi_2)$ is softly broken if $m_{12}^2 \neq 0$.

Assuming CP conservation, we can choose all parameters $\in \mathbb{R}$.

CP-conserving Two Higgs Doublet Model (2HDM)

2 complex $SU(2)_L$ doublets \Rightarrow 5 Higgs states h, H, A, H[±]

Higgs potential (general basis): $(\Phi_1, \Phi_2: SU(2)_L \text{ doublets})$

$$\begin{aligned} \mathcal{V} &= m_{11}^2 \Phi_1^{\dagger} \Phi_2 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + [\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.}] \end{aligned}$$

$$\mathbb{Z}_2$$
 symmetry $(\Phi_1 \rightarrow +\Phi_1, \Phi_2 \rightarrow -\Phi_2)$ is softly broken if $m_{12}^2 \neq 0$.

Assuming CP conservation, we can choose all parameters $\in \mathbb{R}$.

Extending the \mathbb{Z}_2 to the fermion sector suppresses tree-level FCNCs:

2HDM	u	d	l
Type I	Φ ₂	Φ ₂	Φ ₂
Type II	Φ ₂	Φ1	Φ1
Type III	Φ ₂	Φ1	Φ2
Type IV	Φ ₂	Φ ₂	Φ1

Two parameters govern the tree-level couplings: $\tan \beta = v_2/v_1$

$$\begin{pmatrix} \sqrt{2}\operatorname{Re}(\Phi_2) - v_2\\ \sqrt{2}\operatorname{Re}(\Phi_1) - v_1 \end{pmatrix} = \begin{pmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} h\\ H \end{pmatrix}$$

Higgs-vector boson couplings:

hVV: $sin(\beta - \alpha)$, HVV: $cos(\beta - \alpha)$, AVV: 0.

CP-conserving Two Higgs Doublet Model (2HDM)

2 complex $SU(2)_{L}$ doublets \Rightarrow 5 Higgs states h, H, A, H[±]

Higgs potential (general basis): $(\Phi_1, \Phi_2: SU(2)_L \text{ doublets})$

$$\begin{aligned} \mathcal{V} &= m_{11}^2 \Phi_1^{\dagger} \Phi_2 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + [\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.}] \end{aligned}$$

$$\mathbb{Z}_2$$
 symmetry $(\Phi_1 \rightarrow +\Phi_1, \Phi_2 \rightarrow -\Phi_2)$ is softly broken if $m_{12}^2 \neq 0$.

Assuming CP conservation, we can choose all parameters $\in \mathbb{R}$.

Extending the \mathbb{Z}_2	to the	fermion	sector	suppresses	tree-level	FCNCs:
------------------------------	--------	---------	--------	------------	------------	--------

2HDM	u	d	l	coupling	Type I	Type II
Type I Type II Type III Type IV	$ \begin{array}{c c} $	Φ ₂ Φ ₁ Φ ₁ Φ ₂		huu hdd, hle Huu Hdd, Hle Auu Add, Ale	$ \begin{vmatrix} \cos \alpha / \sin \beta \\ \cos \alpha / \sin \beta \\ \sin \alpha / \sin \beta \\ \sin \alpha / \sin \beta \\ -\cot \beta \\ \cot \beta \end{vmatrix} $	$\begin{array}{c} \cos\alpha/\sin\beta\\ -\sin\alpha/\cos\beta\\ \sin\alpha/\sin\beta\\ \cos\alpha/\cos\beta\\ -\cos\beta\\ -\cot\beta\\ -\tan\beta \end{array}$

IMPACT OF HIGGS SIGNAL RATES

(LIGHT HIGGS h AT 125 GeV)

[ATLAS-CONF-2019-005]

• Higgs rates severely constrain the mixing angle $\cos(\beta - \alpha)$, and favor the *alignment limit*, $\cos(\beta - \alpha) \rightarrow 0$.

INTERPLAY OF COLLIDER SEARCHES, COSMOLOGY AND DARK MATTER

1) 2HDM scenarios with strong first-order phase transition:

[Basler, Krause, Mühlleitner, Wittbrodt, Wlotzka '16]

Phase-transition strength, $\xi_c \equiv v_c/T_c$, typically larger for large $M_A - M_H$ $(\xi_c \gtrsim 1 \text{ needed for EW baryogenesis})$. $g_{HAZ} \propto \sin(\beta - \alpha) \rightarrow 1 \text{ in alignment limit.}$ $\Rightarrow pp \rightarrow A \rightarrow HZ$ searches well-motivated. [Dorsch, Huber, Mimasu, No '14]

1) 2HDM scenarios with strong first-order phase transition:

[ATLAS '18]

Phase-transition strength, $\xi_c \equiv v_c/T_c$, typically larger for large $M_A - M_H$ $(\xi_c \gtrsim 1 \text{ needed for EW baryogenesis})$. $g_{HAZ} \propto \sin(\beta - \alpha) \rightarrow 1 \text{ in alignment limit.}$ $\Rightarrow pp \rightarrow A \rightarrow HZ \text{ searches well-motivated.}$ [Dorsch, Huber, Mimasu, No '14]

INTERPLAY OF COLLIDER SEARCHES, COSMOLOGY AND DARK MATTER

1) 2HDM scenarios with strong first-order phase transition:

[Basler, Krause, Mühlleitner, Wittbrodt, Wlotzka '16]

Phase-transition strength, $\xi_c \equiv v_c/T_c$, typically larger for large $M_A - M_H$ $(\xi_c \gtrsim 1 \text{ needed for EW baryogenesis})$. $g_{HAZ} \propto \sin(\beta - \alpha) \rightarrow 1 \text{ in alignment limit.}$ $\Rightarrow pp \rightarrow A \rightarrow HZ$ searches well-motivated. [Dorsch, Huber, Mimasu, No '14]

 \Leftarrow ATLAS Run-II 36 fb⁻¹ limit (*roughly*).

1) 2HDM scenarios with strong first-order phase transition:

Phase-transition strength, $\xi_c \equiv v_c/T_c$, typically larger for large $M_A - M_H$ ($\xi_c \gtrsim 1$ needed for EW baryogenesis). $g_{HAZ} \propto \sin(\beta - \alpha) \rightarrow 1$ in alignment limit. $\Rightarrow pp \rightarrow A \rightarrow HZ$ searches well-motivated. [Dorsch, Huber, Mimasu, No '14]

 \Leftarrow ATLAS Run-II 36 fb⁻¹ limit (*roughly*).

[Basler, Krause, Mühlleitner, Wittbrodt, Wlotzka '16]

2) Inert Doublet Model

 $(\rightarrow A. Zarnecki's talk)$

 Z_2 symmetry is exact \Rightarrow lightest Z_2 -odd scalar is DM candidate.

 \Rightarrow invisible Higgs decays, Z₂-odd Higgs boson pair production, $h \rightarrow \gamma \gamma$ rate.

[Goudelis, Herrmann, Stål '13; Blinov, Profumo, TS '15; Dercks, Robens '18; ...] Tim Stefaniak (DESY) | BSM Higgs physics | ALPS 2019 | 27 April 2019

Heavy Higgs boson H at 125 GeV?

Can be realized in all 2HDM Types, with $\cos(\beta - \alpha) \approx 1$ (alignment limit), and light Higgs boson *h* with $g_{hVV} \approx 0$, and $M_h \in [M_H/2, 115]$ GeV.

Question:

Will we ever be able to tell whether h or H is at 125 GeV?

Heavy Higgs boson H at 125 GeV?

Can be realized in all 2HDM Types, with $\cos(\beta - \alpha) \approx 1$ (alignment limit), and light Higgs boson *h* with $g_{hVV} \approx 0$, and $M_h \in [M_H/2, 115]$ GeV.

Question:

Will we ever be able to tell whether h or H is at 125 GeV?

Even in the alignment limit, $\cos(\beta - \alpha) \rightarrow 1$, charged Higgs effects on the Higgs rates do not decouple:

$$\begin{array}{c} g_{HH^+H^-} \xrightarrow{c_{\beta-\alpha} \to 1} -\frac{1}{v} \left(M_H^2 + 2M_{H^+}^2 - 2\overline{m}^2 \right) \\ \xrightarrow{M_{H^+} \gg M_H} -\frac{2M_{H^+}^2}{v}, \\ \end{array}$$
because $\overline{m}^2 \equiv 2m_{12}^2 / \sin(2\beta) \lesssim \mathcal{O}(v^2)$
imposed by unitarity and stability
conditions.

\Rightarrow suppression of the $H \rightarrow \gamma \gamma$ rate!

[Bernon, Gunion, Haber, Jiang, Kraml '15].

Heavy Higgs boson H at 125 GeV?

Can be realized in all 2HDM Types, with $\cos(\beta - \alpha) \approx 1$ (alignment limit), and light Higgs boson *h* with $g_{hVV} \approx 0$, and $M_h \in [M_H/2, 115]$ GeV.

Question:

Will we ever be able to tell whether h or H is at 125 GeV?

Even in the alignment limit, $\cos(\beta - \alpha) \rightarrow 1$, charged Higgs effects on the Higgs rates do not decouple:

$$g_{HH^+H^-} \xrightarrow{c_{\beta-\alpha} \to 1} -\frac{1}{v} \left(M_H^2 + 2M_{H^+}^2 - 2\overline{m}^2 \right)$$
$$\xrightarrow{M_{H^+} \gg M_H} -\frac{2M_{H^+}^2}{v},$$

because $\overline{m}^2 \equiv 2m_{12}^2/\sin(2\beta) \lesssim \mathcal{O}(v^2)$ imposed by unitarity and stability conditions.

 \Rightarrow suppression of the $H \rightarrow \gamma \gamma$ rate!

[Bernon, Gunion, Haber, Jiang, Kraml '15].

In Type II (and III), flavor constraints imposes $M_{H^+} \gtrsim 600 \text{ GeV}$. In Type I (and IV), the charged Higgs boson can be much lighter.

[Arbey, Mahmoudi Stål, TS '17]
CHARGED HIGGS BOSONS AT THE LHC

In the alignment limit with the heavy Higgs *H* at 125 GeV, the coupling $g_{H\pm W\mp h} \propto \cos(\beta - \alpha)$ is maximized!

 \Rightarrow sizable $H^{\pm} \rightarrow W^{\pm}h$ decay rates!

h mostly decays to $b\bar{b}$, $\tau^+\tau^-$, or to WW^{*}, ZZ^{*}, $\gamma\gamma$ (if fermiophobic limit).

Current LHC H^{\pm} searches mostly focus on fermionic final states ($\tau \nu_{\tau}$, tb). \Rightarrow become insensitive if bosonic H^{\pm} decay modes dominate.

[TS, Wittbrodt (in progress)]

CHARGED HIGGS BOSONS AT THE LHC

In the alignment limit with the heavy Higgs *H* at 125 GeV, the coupling $g_{H^{\pm}W^{\mp}h} \propto \cos(\beta - \alpha)$ is maximized!

 \Rightarrow sizable $H^{\pm} \rightarrow W^{\pm}h$ decay rates!

h mostly decays to $b\bar{b}$, $\tau^+\tau^-$, or to WW^{*}, ZZ^{*}, $\gamma\gamma$ (if fermiophobic limit).

Current LHC H^{\pm} searches mostly focus on fermionic final states ($\tau \nu_{\tau}$, tb). \Rightarrow become insensitive if bosonic H^{\pm} decay modes dominate.

[TS, Wittbrodt (in progress)]

[TS, Wittbrodt (in progress)]

Production process	Higgs decay processes	Final state particles
$pp ightarrow H^{\pm}tb$	$H^{\pm} \rightarrow W^{\pm}h, h \rightarrow \begin{cases} bb\\ \tau\tau\\ WW\\ ZZ\\ \gamma\gamma \end{cases}$	$tbW^{\pm} + \begin{bmatrix} bb\\ \tau\tau\\ WW\\ ZZ\\ \gamma\gamma \end{bmatrix}$
$pp ightarrow H^{\pm}h$	$H^{\pm} \rightarrow W^{\pm}h, h \rightarrow \begin{cases} bb \\ \tau \tau \\ WW \\ ZZ \\ \gamma \gamma \end{cases}$	$W^{\pm} + \begin{bmatrix} bb\\ \tau\tau\\ WW\\ ZZ\\ \gamma\gamma \end{bmatrix} \oplus \begin{bmatrix} bb\\ \tau\tau\\ WW\\ ZZ\\ \gamma\gamma \end{bmatrix}$
$pp ightarrow H^{\pm}W^{\mp}$	$H^{\pm} \rightarrow W^{\pm}h, h \rightarrow \begin{cases} bb \\ \tau \tau \\ WW \\ ZZ \\ \gamma \gamma \end{cases}$	$W^{\pm}W^{\mp} + \begin{bmatrix} bb \\ \tau\tau \\ WW \\ ZZ \\ \gamma\gamma \end{bmatrix}$
$pp ightarrow H^{\pm} H^{\mp}$	$H^{\pm} \rightarrow W^{\pm}h, h \rightarrow \begin{cases} bb\\ \tau\tau\\ WW\\ ZZ\\ \gamma\gamma \end{cases}$	$ \left \begin{array}{c} W^{\pm}W^{\mp} + \left[\begin{array}{c} bb \\ \tau\tau \\ WW \\ ZZ \\ \gamma\gamma \end{array} \right] \oplus \left[\begin{array}{c} bb \\ \tau\tau \\ WW \\ ZZ \\ \gamma\gamma \end{array} \right] \right. $

[TS, Wittbrodt (in progress)]

Production process	Higgs decay processes	Final state particles	
$pp \rightarrow H^{\pm}tb$	$ \begin{array}{c} H^{\pm} \rightarrow W^{\pm}h, h \rightarrow \begin{cases} bb \\ \tau\tau \\ WW \\ ZZ \\ \gamma\gamma \end{cases} \end{array} $	$tbW^{\pm} + \begin{bmatrix} bb \\ \tau \tau \\ WW \\ Zz \\ \gamma \gamma \end{bmatrix}$	
	L (bb		
Many new experimental opportunities for upcoming LHC Run(s)			
hany new expe			
D	c ++ ++++ +		
Direct searches	for $H^{\perp} \rightarrow W^{\perp *} h$ and p	recision $H \rightarrow \gamma \gamma$ measurements:	
\Rightarrow conclusive statement whether <i>h</i> or <i>H</i> is SM-like Higgs at 125 GeV!			
		77	
	22		
	(bb		
$pp \rightarrow H^{\pm}H^{\mp}$	$H^{\pm} \rightarrow W^{\pm}h h \rightarrow W^{\pm}WW$	$W^{\pm}W^{\mp} \perp WW \oplus WW$	
PP 711 11			
	$\gamma\gamma$		

THE MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)

SUSY: Hypothetical space-time symmetry relating fermions & bosons.

 \Rightarrow Introduce superpartners for every SM field.

- + SUSY cannot be exact. Expect SUSY masses $\gtrsim {\cal O}(1\,{\rm TeV});$
- Neutral/charged EW gauginos and Higgsinos \xrightarrow{mix} neutralinos/charginos.

MSSM HIGGS SECTOR

The tree-level MSSM Higgs sector is a 2HDM of Type II with

$$egin{aligned} \lambda_1 &= \lambda_2 = rac{1}{4}(g^2 + g'^2), & \lambda_3 = rac{1}{4}(g^2 - g'^2), \ \lambda_4 &= -rac{1}{2}g^2, & \lambda_5 = \lambda_6 = \lambda_7 = 0. \end{aligned}$$

It is described by only two parameters: M_A , tan β

Predicted tree-level mass spectrum:

$$\begin{split} M_{h,H}^2 &= \frac{1}{2} \left[M_A^2 + M_Z^2 \mp \sqrt{(M_A^2 + M_Z^2)^2 - 4M_A^2 M_Z^2 \cos^2 2\beta} \right] \quad \Rightarrow M_h^{\text{tree}} \le M_Z \; ! \\ M_{H^\pm}^2 &= M_A^2 + M_W^2 \end{split}$$

(SM-like) Higgs mass M_h receives large radiative corrections:

$$\left[\Delta M_h^2 \right]_{1L}^{t,\tilde{t}} \approx \frac{3m_t^4}{2\pi^2 v^2} \left[\log\left(\frac{M_S^2}{m_t^2}\right) + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12M_S^2}\right) \right] \qquad \begin{array}{l} \left(\begin{array}{c} (M_A \gg M_Z, \tan\beta \gg 1) \\ X_t = A_t - \mu / \tan\beta, \\ M_S = \sqrt{M_{\tilde{t}_1} M_{\tilde{t}_2}}. \end{array} \right)$$

 \Rightarrow with SUSY particles at TeV-scale we can get $M_h \lesssim 135 \text{ GeV}!$

Precise predictions & measurement of the SM-like Higgs mass:

 \Rightarrow important constraints on MSSM parameter space.

Fit of the pMSSM-8 to LHC Run-I data:

All points with $M_h \in [120, 130]$ GeV HiggsBounds allowed $\Delta \chi^2 < 2.30$ $\Delta \chi^2 < 5.99$

(assumed theory uncert. $\Delta M_h = 3 \text{ GeV}$)

 \Rightarrow need large stop mixing, X_t/M_S , and/or large stop masses.

[Bechtle et al. '16]

Precise predictions & measurement of the SM-like Higgs mass:

 \Rightarrow important constraints on MSSM parameter space.

Theory predictions of *M_h* (state-of-the-art): (for a review: [Draper, Rzehak '16])

Most public codes include full 1-loop + dominant (strong, y_t) 2-loop corrections (and beyond) to M_h :

FeynHiggs, SPheno/SARAH, SoftSUSY/FlexibleSUSY, SuSpect, ...

For small $\tan \beta$ or small mixing ($X_t \ll M_S$) multi-TeV stop masses required:

 \Rightarrow resummation of large logarithms needed:

SusyHD, MhEFT, HSSUSY ("EFT codes");

FeynHiggs (ver. \geq 2.10), FlexibleEFTHiggs, SPheno/SARAH ("hybrid codes").

Still, non-negligible theory and parametric (m_t) uncertainty! [Allanach, Voigt '18]

The Role of the Higgs mass in the MSSM

Precise predictions & measurement of the SM-like Higgs mass:

 \Rightarrow important constraints on MSSM parameter space.

Simplified benchmark point: $tan\beta = 20$, all SUSY masses = 1 TeV, X_t varied to maximize M_h

Public Code	M _h [GeV]	
SPheno 4.0.3	124.6	
SuSpect 2.43	125.8	
SoftSUSY 4.1.6	124.4	
NMSSMTools 5.3.1	124.6	
FeynHiggs 2.14.3	125.7	

(Higgs Days in Santander 2018)

Fixed-order calculations in the DR scheme (no resummation)

different treatment of top Yukawa cpl.

[taken from P. Slavich, HDays '18]

All of these codes include full 1-loop + dominant (strong+Yukawa) 2-loop corrections to Mh

[Bahl, Fuchs, Hahn, Heinemeyer, Liebler, Patel, Slavich, TS, Wagner, Weiglein]

6 scenarios with fixed scale $M_S \sim \mathcal{O}(\text{TeV})$, 2 scenarios with variable M_S .

M ¹²⁵ _h	"standard" scenario, all SUSY masses $\gtrsim 1{\rm TeV}$	
$M_h^{125}(ilde{ au})$	light staus: sizable effect on $h\to\gamma\gamma$ at large $\tan\beta$	
$M_h^{125}(ilde{\chi})$	light EW-inos: new decay channels for heavy Higgs bosons	
M_h^{125} (alignment)	h couplings very SM-like even at low M_A values	
M ¹²⁵ H	heavier MSSM Higgs boson H is SM-like at \sim 125 ${ m GeV}$	
M _h ¹²⁵ (CPV)	interference effects suppress heavy Higgs rate in $ au^+ au^-$ channel	
[Bahl et al. 1808.07542]		
M ¹²⁵ h.EFT	"standard" scenario for the low $ aneta$ region	
$M_{h, \text{EFT}}^{125}(ilde{\chi})$	light EW-ino scenario for the low $ aneta$ region	
,	[Bahl, Liebler, TS 1901.05933]	

(effort within the LHC Higgs Cross Section Working Group)

[Bahl, Fuchs, Hahn, Heinemeyer, Liebler, Patel, Slavich, TS, Wagner, Weiglein]

6 scenarios with fixed scale $M_S \sim \mathcal{O}(\text{TeV})$, 2 scenarios with variable M_S .

M ¹²⁵	"standard" scenario, all SUSY masses \gtrsim 1 ${ m TeV}$	
$M_h^{125}(ilde{ au})$	light staus: sizable effect on $h ightarrow \gamma \gamma$ at large $ an eta$	
$M_h^{125}(ilde{\chi})$	light EW-inos: new decay channels for heavy Higgs bosons	
M_h^{125} (alignment)	h couplings very SM-like even at low M_A values	
M _H ¹²⁵	heavier MSSM Higgs boson H is SM-like at \sim 125 ${ m GeV}$	
M ¹²⁵ (CPV)	interference effects suppress heavy Higgs rate in $ au^+ au^-$ channel	
	[Bahl et al. 1808.07542]	
M ¹²⁵ h.EFT	"standard" scenario for the low $ aneta$ region	
$M_{h,\text{EFT}}^{125}(ilde{\chi})$	light EW-ino scenario for the low $ aneta$ region	
,	[Bahl, Liebler, TS 1901.05933]	

(effort within the LHC Higgs Cross Section Working Group)

M_h^{125} BENCHMARK SCENARIO

- + Assumption: all SUSY particle masses are $\gtrsim 1\,{\rm TeV}.$
- Higgs rates & limits \Rightarrow H, A and H[±] expected to be heavy (mass \gtrsim 600 GeV).

- \cdot Assumption: light neutralinos and charginos with masses \sim (100 250) GeV.
- Impact of $H/{\rm A} \to \tau^+ \tau^-$ search limit on parameter space weakened due to additional $H/{\rm A}$ decay modes.

- \cdot Assumption: light neutralinos and charginos with masses \sim (100 250) GeV.
- Impact of $H/A \to \tau^+ \tau^-$ search limit on parameter space weakened due to additional H/A decay modes.

$M_h^{125}(\tilde{\chi})$ benchmark scenario: light neutralinos & charginos

- \cdot Assumption: light neutralinos and charginos with masses \sim (100 250) GeV.
- Impact of $H/A \to \tau^+ \tau^-$ search limit on parameter space weakened due to additional H/A decay modes.

${\cal M}_h^{ m 125}(ilde{\chi})$ benchmark scenario: light neutralinos & charginos

MALGEVJ

- \cdot Assumption: light neutralinos and charginos with masses \sim (100 250) GeV.
- Impact of $H/{\rm A} \to \tau^+ \tau^-$ search limit on parameter space weakened due to additional $H/{\rm A}$ decay modes.

HL-LHC REACH FOR THE MSSM HIGGS SECTOR

- + HL-LHC Higgs rate measurements will be sensitive to $M_A \lesssim 1 ~{\rm TeV}.$
- Direct searches for $pp \rightarrow H/A \rightarrow \tau^+ \tau^-$ are sensitive to $M_A \lesssim 2.5 \text{ TeV}$ (depending on tan β).

[Bahl, Bechtle, Heinemeyer, Liebler, TS, Weiglein, *contr. to* CERN-LPCC-2018-04] Tim Stefaniak (DESY) | BSM Higgs physics | ALPS 2019 | 27 April 2019

HL-LHC REACH FOR THE MSSM HIGGS SECTOR

- + HL-LHC Higgs rate measurements will be sensitive to $M_A \lesssim 1 \, {\rm TeV}.$
- Direct searches for $pp \rightarrow H/A \rightarrow \tau^+ \tau^-$ are sensitive to $M_A \lesssim 2.5 \text{ TeV}$ (depending on tan β).

[Bahl, Bechtle, Heinemeyer, Liebler, TS, Weiglein, *contr. to* CERN-LPCC-2018-04] Tim Stefaniak (DESY) | BSM Higgs physics | ALPS 2019 | 27 April 2019

HL-LHC REACH FOR THE MSSM HIGGS SECTOR

- Chargino contribution to $h \rightarrow \gamma \gamma \Rightarrow$ indirect sensitivity on the electroweakino sector from $h \rightarrow \gamma \gamma$ precision measurements.
- Interesting interplay with direct searches for electroweakinos.

[Bahl, Bechtle, Heinemeyer, Liebler, TS, Weiglein, (in prep.)]

Conclusions

LHC results on the 125 ${\rm GeV}$ Higgs boson and searches for new scalar states have important implications for BSM Higgs models.

 \Rightarrow Approximate alignment limit (i.e. SM-like Higgs couplings) is realized.

However: Still room for new Higgs discoveries in upcoming LHC runs!

- \cdot Additional Higgs bosons can be lighter or heavier than 125 GeV,
- some searches only become sensitive with more data (e.g. $H \rightarrow hh$ in Z₂-symmetric singlet extension),
- additional Higgs bosons may only be probed by new searches for so-far-uncovered signatures: $h_i \rightarrow h_j h_k$, $H^{\pm} \rightarrow W^{\pm} h$, $pp \rightarrow H/A \rightarrow \tilde{\chi} \tilde{\chi}$, ...

We need to be open-minded and consider all possible collider searches over full accessible kinematical range, and keep on searching!

LHC results on the 125 ${
m GeV}$ Higgs boson and searches for new scalar states have important implications for BSM Higgs models.

 \Rightarrow Approximate alignment limit (i.e. SM-like Higgs couplings) is realized.

However: Still room for new Higgs discoveries in upcoming LHC runs!

- \cdot Additional Higgs bosons can be lighter or heavier than 125 GeV,
- some searches only become sensitive with more data (e.g. $H \rightarrow hh$ in Z₂-symmetric singlet extension),
- additional Higgs bosons may only be probed by new searches for so-far-uncovered signatures: $h_i \rightarrow h_j h_k$, $H^{\pm} \rightarrow W^{\pm} h$, $pp \rightarrow H/A \rightarrow \tilde{\chi} \tilde{\chi}$, ...

We need to be open-minded and consider all possible collider searches over full accessible kinematical range, and keep on searching!

Thank you very much for your attention!

Backup Slides

HiggsBounds

Theory input: M_i , Γ_i^{tot} , XS's and BR's for all neutral and charged Higgs bosons.

Experimental input:

 $\mathcal{O}(200)$ "model-independent" 95% C.L. limits from LEP, Tevatron and LHC.

"Combination" procedure:

Each Higgs boson *h_i* is *only* confronted with the observed limit of the experimental analysis that's *most sensitive* to it (judged by expected limit).

Result: parameter point is excluded/allowed at 95% C.L..

HiggsBounds

Theory input:

 M_i , Γ_i^{tot} , XS's and BR's for all neutral and charged Higgs bosons.

Experimental input:

 $\mathcal{O}(200)$ "model-independent" 95% C.L. limits from LEP, Tevatron and LHC.

"Combination" procedure:

Each Higgs boson *h_i* is *only* confronted with the observed limit of the experimental analysis that's *most sensitive* to it (judged by expected limit).

Result: parameter point is excluded/allowed at 95% C.L..

$$\chi^2_{\mu} = (\hat{\mu} - \mu) C_{\mu}^{-1} (\hat{\mu} - \mu)$$

$$\chi^2_{\mu} = (\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}) \boldsymbol{C}_{\mu}^{-1} (\hat{\boldsymbol{\mu}} - \boldsymbol{\mu})$$

Measured signal strengths (in various forms):

(analysis assumes a SM-like Higgs signal)

current version: 56 traditional μ obs. + 24 STXS obs. + 20 LHC-Run-1 obs.

$$\chi^{2}_{\mu} = (\hat{\mu} - \mu) C_{\mu}^{-1} (\hat{\mu} - \mu)$$

$$/$$
Predicted signal strength:
$$\mu = \frac{\sum_{i} \epsilon_{i} [\sigma \times BR]_{i}}{\sum_{i} \epsilon_{SM,i} [\sigma_{SM} \times BR_{SM}]_{i}}$$

Untagged 0 Untagged 1

Untagged 2

Untacodd 3 VBF 0

ttH Leptonic ZH Leptonic

WH Leptonic

VH LeptonicLoose VH Hadronic VH MET 4.0 expect 10 20 30 40 50 60 Signal fraction (%)

VDE 1 VBF 2 ttH Hadronic ϵ_{SM} : signal efficiency of channel i in SM.

signal efficiency of channel *i* in model. default assumption: $\epsilon_i = \epsilon_{SM,i}$

 $\epsilon_i \neq \epsilon_{\text{SM},i}$ requires external MC simulation:

 $\Rightarrow \epsilon_i$ can then be set as additional input.

$$\chi^2_{\mu} = (\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}) \boldsymbol{C}_{\mu}^{-1} (\hat{\boldsymbol{\mu}} - \boldsymbol{\mu})$$

Covariance matrix

correlation matrices sometimes given by

ATLAS/CMS (for subset of observables).

 \Rightarrow included in **HiggsSignals**.

Otherwise: treat luminosity uncertainty,

theoretical σ and BR uncertainties

as fully correlated.

HL-LHC PROSPECTS ON INVISIBLE HIGGS DECAYS

$M_h^{125}(ilde{ au})$ SCENARIO: LIGHT STAUS

$$\mu = 1$$
 TeV, $M_1 = 180$ GeV, $M_2 = 300$ GeV, $M_3 = 2.5$ TeV,

$$X_t = 2.8 \text{ TeV}, \quad A_b = A_t, \quad A_\tau = 800 \text{ GeV}.$$

$M_h^{125}(ilde{ au})$ scenario: light staus

$$X_t = 2.8 \text{ TeV}, \quad A_b = A_t, \quad A_\tau = 800 \text{ GeV}.$$

$M_h^{125}(\tilde{\tau})$ scenario: heavy Higgs to SUSY decays

Both $H/A \rightarrow \tilde{\tau}\tilde{\tau}$ and $H/A \rightarrow \tilde{\chi}\tilde{\chi}$ possible.

 \Rightarrow additional *H*/*A* decays weaken the impact of *H*/*A* $\rightarrow \tau^+ \tau^-$ constraints.

For recent proposals for a $H/A \rightarrow \tilde{\tau}\tilde{\tau}$ search, see

[Gori, Liu, Shakya 1811.11918], [Arganda, Martín-Lozano, Medina, Mileo 1804.10698].

M_h^{125} (ALIGNMENT) SCENARIO

$$\begin{split} M_{Q_3} &= M_{U_3} = M_{D_3} = 2.5 \ {\rm TeV}, \quad M_{L_3} = M_{E_3} = 2 \ {\rm TeV}, \\ \mu &= 7.5 \ {\rm TeV}, \quad M_1 = 500 \ {\rm GeV}, \quad M_2 = 1 \ {\rm TeV}, \quad M_3 = 2.5 \ {\rm TeV}, \\ A_t &= A_b = A_\tau = 6.25 \ {\rm TeV} \,. \end{split}$$

M_h^{125} (ALIGNMENT) SCENARIO

M_{H}^{125} scenario: the heavier Higgs *H* is SM-like

M_{H}^{125} scenario: charged Higgs phenomenology

 $H^{\pm}W^{\mp}h$ coupling $\propto \cos(\beta - \alpha) \approx 1$ if H is SM-like.

 \Rightarrow Important signature: $H^{\pm} \rightarrow W^{\pm}h$, with $h \rightarrow b\bar{b}, \tau^{+}\tau^{-}$.

M_{H}^{125} scenario: the heavier Higgs *H* is SM-like

M_{H}^{125} scenario: the heavier Higgs *H* is SM-like

$M_{h_1}^{125}$ (CPV) scenario: neutral Higgs bosons mix (h_1, h_2, h_3)

$M_{h_1}^{125}$ (CPV) scenario: $pp \rightarrow h_2/h_3 \rightarrow \tau^+ \tau^-$ interference

Interference effects calculated and studied in [Fuchs, Weiglein 1705.05757].

 \Rightarrow Significant reduction of $\tau^+\tau^-$ signal rate!

However: Scenario in conflict with ACME 2018 electron EDM limit!

[ACME Nature 562, 355-360 (2018)]

RE-OPENING THE LOW tan β **REGION**

Standard scenarios: $M_h < 122 \text{ GeV}$ for $\tan \beta \lesssim 6$, because $M_S \sim (1-2) \text{ TeV}$.

Allow lower tan β values by tuning $M_h = 125$ GeV at every point:

 $\mathcal{O}(\mathrm{TeV}) \lesssim M_{S} \lesssim 10^{16} \mathrm{~GeV}.$

Employ an effective field theory (EFT) calculation with a low-energy 2HDM(plus electroweakinos and/or gluinos).[Bahl, Hollik 1805.00867]

State-of-the-art calculation implemented in (yet unpublished) **FeynHiggs** version.

$$M_h^{125}$$
 scenario $\longrightarrow M_{h,EFT}^{125}$ scenario
 $M_h^{125}(\tilde{\chi})$ scenario $\longrightarrow M_{h,EFT}^{125}(\tilde{\chi})$ scenario

Similar (older) scenarios:

hMSSM [Djouadi et al. 1307.5205], low-tan β -high scenario [LHCHXSWG-2015-002].

Important search channels: $H \rightarrow hh$ and $H/A \rightarrow t\bar{t}$.

Very recent discussion of $H/A \rightarrow t\bar{t}$ signal+BG interference effects and discovery prospects: [Djouadi, Ellis, Popov, Quevillon 1901.03417]

$M_{h,\mathrm{EFT}}^{\mathrm{125}}(\tilde{\chi})$ SCENARIO

+ Light electroweakinos lead to upward shift of M_h by $\sim 1.5~{\rm GeV}.$

 \Rightarrow Slightly lower M_S values required as in $M_{h,\text{EFT}}^{125}$ scenario.

$M_{h, { m EFT}}^{ m 125}(ilde{\chi})$ SCENARIO

- Light electroweakinos lead to upward shift of M_h by ~ 1.5 GeV. \Rightarrow Slightly lower M_s values required as in $M_{h, FFT}^{125}$ scenario.
- Light charginos lead to $h \rightarrow \gamma \gamma$ enhancement at low tan β . \Rightarrow very low tan β values are constrained by LHC Higgs signal rates.

$M_{h,\text{EFT}}^{125}(\tilde{\chi})$ scenario: heavy Higgs decays

For $M_A \gtrsim 400 \text{ GeV}$, heavy-Higgs-to-electroweakino decays are dominant.

As in the standard $M_h^{125}(\tilde{\chi})$ scenario:

Cascade decays preferred, leading to multi-W/Z-boson+ $\not{\not{E}}_T$ signatures.

 \Rightarrow Dedicated experimental analyses of $H/A \rightarrow \tilde{\chi}\tilde{\chi}$ decays are well-motivated!