Above-Ground Direct Searches for WIMPS

Motivation (SIMPs)

Constraints for high-mass DM particle

Constraints from Direct Searches for sub-GeV DM particles

Jules Gascon (IPNLyon, Université Lyon 1 + CNRS/IN2P3)

Strong DM interactions?

- Main focus of direct DM searches so far: DM-nucleon cross-sections below 10⁻³¹ cm²:
 - Shielding from Earth + atmosphere can be neglected.
 - Deep underground sites, to reduce cosmic-ray induced backgrounds
- But strong interactions of ~GeV DM particles are relevant
 - O(10⁻²⁴) cm² DM-DM cross-section of ~GeV DM particles [cf: <0.57 cm²/g, JI Read, ALPS2019] could actually help CDM problems at small-scale (DM halo, satellites...) [Spergel+Steinhardt PRL 84 3760 (2000)]
 - Natural extension to test for O(10⁻²⁴) cm² DM-nucleon interactions [e.g. Chen et al, PRD 65 123515 (2002)]

Strongly Interacting Massive Particles

- No exclusive definition of SIMPs (yet):
 - Strong self-interactions limited to Hidden sector (e.g. Models with 3→2 processes during freeze-out [Hochberg, PRL 115 021301 (2015)]
 - ... or extended to interactions with nucleons/e⁻/ γ (... millicharge) [e.g. Davidson et al, JHEP05,03 (2000); Chang et al, JHEP09 051 (2018)]
 - Or (in the context of direct DM searches): strong force interaction with nucleons

This talk...

SIMP interactions with Earth + atmosphere

Many recent papers, see e.g.

- Hooper+McDermott, PRD 97 115006 (2018)
- Emken+Kouvaris, PRD 97 115047 (2018)
- Kavanagh, PRD 97 123013 (2018)
 - anagn, PRD 97 123013 (2018)
- Kavanagh+Catena+Kouvaris, JCAP 01(2017)012
- Depth-dependent reduction of velocity + attenuation of flux

https://github.com/temken/damascus

https://github.com/bradkav/verne

SIMP interactions with Earth + atmosphere

Many recent papers, see e.g.

- Hooper+McDermott, PRD 97 115006 (2018)
- Emken+Kouvaris, PRD 97 115047 (2018)

https://github.com/temken/damascus https://github.com/bradkav/verne

- Kavanagh, PRD 97 123013 (2018)
- Kavanagh+Catena+Kouvaris, JCAP 01(2017)012
- Depth-dependent reduction of velocity + attenuation of flux
- Anisotropy due to Earth shielding + sun velocity vector

... some days may be better than others for SIMP searches

Monte Carlo vs analytical calculations

 Depth-dependent energy spectrum + abrupt cut-off: determining σ_{max} requires a scan with a fine granularity, especially at low mass

Monte Carlo vs analytical calculation comparisons

Analytical:

Davis, PRL 119, 211302 (2017) Hooper+McDermott, PRD97 115006 (2018) Kavanagh, PRD 97 123013 (2018)

Monte Carlo:

Emken+Kouvaris, PRD 97 115047 (2018)

Constraints at high mass

- Large cross sections excluded by CMB + large scale structures + BBN
- Gap between CMB and deep underground searches [e.g. Albuquerque + Baudis, PRL91 229903 (2003)] filled by balloon experiments + space experiments + IceCube + Earth heat flux

Limits at lower mass

RRS balloon

[J. Rich et al, PLB194 173 (1987)]

- 0.5 g Si ionization detector
- 50 km above ground
- 0.4 keV_{ee} threshold (~2 keV recoil)

XQC rocket

[Erickeck et al, PRD 76 042007 (2007)]

- Si calorimeter @ 60 mK:~30 eV threshold
- 200 km above ground
- 100 s of data (3x10⁻⁶ kgd!)

< 1 GeV SIMP search experiments

- Above-ground Liquid Scintillator [Collar, PRD98 023005 (2018)]
 - 10⁻³¹ cm² limits obtained with aggressive subtraction of single-e⁻ PM noise
- Reanalysis of DM search data from shallow sites? (...>1 GeV/c²)
 - DAMIC 2011 (100 m rock) [Hooper+McDermott, PRD97 115006 (2018)]
 - CDMS-I SUF (10.3 m rock) [Kavanagh, PRD 97 123013 (2018)]
- Above-ground: CRESST v-cleus
 - 0.49 g Al₂O₃, phonon signal
 - 20 eV (phonon) threshold
 - ~10⁵ evt/g/day at 100 eV
- Above-ground: EDELWEISS-surf
 - 33 g Ge, phonon signal
 - 60 eV (phonon) threshold
 - ~200 evt/g/day at 100 eV

<1 m overburden

No problem with quenching effects

(+resolution: minimal distortion of signal shape)

No background assumptions

Detector developments for both DM & coherent elastic neutrino-nucleon scattering

Experimental data

CRESST-v-cleus

- $0.49 \text{ g Al}_2 0_3$
- TES phonon sensor
- Upper limits from Yellin optimal interval method

Angloher et al, EPJC77 637 (2017) + Davis, PRL119, 211302 (2017)

EDELWEISS-surf

- 33 q Ge
- GeNTD phonon sensor
- Max. Poisson rate in blindly-determined energy intervals

Armengaud et al, PRD99 082003 (2019)

Background Model

Analysis Threshold (60 eV

Migdal effect

 Consider ionization effects of ecloud (n=3 shell) due to sudden boost of nucleus in DM collision

Calculated in Ibe et al, JHEP 03 (2018) 194

- <1% probability</p>
- Negligible for >10 GeV/c² WIMPs
- Major contribution for light DM particles, especially if nuclear recoil contribution is quenched
- Robust signal >100 eV even for DM masses <0.1 GeV/c²
- Must keep EM backgrounds as low as possible

Dolan et al, PRL 121, 101801 (2018)

Starting to fill the SubGeV gap...

- Shaded regions: full Earth-Shielding (ES) calculation
- Lines: underground limits (w/o ES calculation, ok for <10⁻³¹ cm²)

Spin-dependent cases

- Unfortunately, ¹⁴N has both p and n spin: shielding from atmosphere
- Large cross-section → dramatic ES effects (especially on Migdal limits)
- Blue dot-dashed: CRESST surface Li₂MoO₄ [arXiv:1902.07587] and underground CaWO₄ [arXiv:1904.00498] SIMP contour calcs. underway

Conclusions

- Recent above-ground direct searches for <GeV/ c^2 DM particles interacting with nucleons help cover a relevant domain of the (M_{DM}, σ) parameter space
- Thresholds and backgrounds are key factors
 - Technological developments for both surface DM & coherent elastic neutrino-nucleon scattering experiments (RICOCHET & v-cleus)
 - Small cryogenic detectors have low and well-defined thresholds (eg: resolution, quenching effects)
 - Challenge 1: further background reductions without increasing the external shielding
 - Challenge 2: further improvements in thresholds
 - Migdal effect helps reduce thresholds → this stresses the importance to get a direct measurement of this effect (with cryogenic Ge?)

SIMP interactions with Earth + atmosphere

See e.g.

- Hooper+McDermott, PRD 97 115006 (2018)
- Emken+Kouvaris, PRD 97 115047 (2018)

https://github.com/temken/damascus

https://github.com/bradkav/verne

- Kavanagh, PRD 97 123013 (2018)
- Kavanagh+Catena+Kouvaris, JCAP 01(2017)012
- Depth-dependent reduction of velocity + attenuation of flux

1 GeV/c² DM velocity attenuation vs depth

Emken+Kouvaris

Liquid Scintillator experiment

JI Collar, PRD 98, 023005 (2018)

- 2 liquid scintillators EJ-301
- PSD, veto timing (but not relevant for low energy)
- Aggressive subtraction of singleelectron dark current
- Earth/atmosphere shielding effects not taken into account

