Lattice spectroscopy of SU(2) Adjoint Higgs model

Vincenzo Afferrante, Axel Maas, Pascal Toerek

University of Graz

ALPS 2019, 24.4.2019
Elementary fields of SM are treated as observable in PT.
Elementary fields of SM are treated as observable in PT.

Transform non-trivially under gauge transformations.
FMS Mechanism

- Elementary fields of SM are treated as observable in PT.
- Transform non-trivially under gauge transformations.
- The real physical objects must be gauge invariant bound states with definite quantum numbers.
FMS Mechanism

- Elementary fields of SM are treated as observable in PT.
- Transform non-trivially under gauge transformations.
- The real physical objects must be gauge invariant bound states with definite quantum numbers.
- Correlators of gauge-invariant operators characterized by J^P quantum numbers \rightarrow comparison with ordinary perturbation theory of J^P states.

FMS Mechanism

- Elementary fields of SM are treated as observable in PT.
- Transform non-trivially under gauge transformations.
- The real physical objects must be gauge invariant bound states with definite quantum numbers.
- Correlators of gauge-invariant operators characterized by J^P quantum numbers \rightarrow comparison with ordinary perturbation theory of J^P states.

- FMS example: SU(N) + fundamental Higgs

\[O_{0+}(x) = (\phi^\dagger \phi)(x) \]

- Fix the gauge to non-vanishing vev: $\phi(x) = \frac{v}{\sqrt{2}} n + h(x)$
- Expand the correlator

\[\langle O_{0+}^\dagger(x) O_{0+}(y) \rangle = \text{const.} + 4v^2 \langle h(x)^\dagger h(y) \rangle + O(h^4). \]
FMS Mechanism for electroweak sector of SM

- FMS used for Standard Model.
- We focus on EW sector.
FMS Mechanism for electroweak sector of SM

- FMS used for Standard Model.
- We focus on EW sector.
- Gauge invariant spectrum of the scalar state corresponds to perturbation theory.
- Similar relation for vector state.
FMS Mechanism for electroweak sector of SM

- FMS used for Standard Model.
- We focus on EW sector.
- Gauge invariant spectrum of the scalar state corresponds to perturbation theory.
- Similar relation for vector state.
- States are mapped from multiplets of local $SU(2)$ to multiplets of global custodial $SU(2)$.

[Maas,Mufti-1412.6440(hep-lat)]

FMS mechanism can be applied to fermions (no lattice results so far).

Exist examples with no correspondence.

[Maas,Sondenheimer,Toerek-1709.07477(hep-ph)]
FMS Mechanism for electroweak sector of SM

- FMS used for Standard Model.
- We focus on EW sector.
- Gauge invariant spectrum of the scalar state corresponds to perturbation theory.
- Similar relation for vector state.
- States are mapped from multiplets of local $SU(2)$ to multiplets of global custodial $SU(2)$.
- Poles of bound states are at same position as elementary fields. [Maas,Mufti-1412.6440(hep-lat)]
FMS Mechanism for electroweak sector of SM

- FMS used for Standard Model.
- We focus on EW sector.
- Gauge invariant spectrum of the scalar state corresponds to perturbation theory.
- Similar relation for vector state.
- States are mapped from multiplets of local $SU(2)$ to multiplets of global custodial $SU(2)$.
- Poles of bound states are at same position as elementary fields. [Maas,Mufti-1412.6440(hep-lat)]
- FMS mechanism can be applied to fermions (no lattice results so far).
- Exist examples with no correspondence. [Maas,Sondenheimer,Toerek-1709.07477(hep-ph)]
SU(2) Gauge theory coupled with an adjoint Scalar

- The Lagrangian of the theory:

\[\mathcal{L} = -\frac{1}{4} F_{\mu\nu}^a F_{\mu\nu}^a + \text{tr} \left[(D_\mu \Phi)^\dagger (D^\mu \Phi) \right] - V(\Phi). \]
SU(2) Gauge theory coupled with an adjoint Scalar

- The Lagrangian of the theory:

\[\mathcal{L} = -\frac{1}{4} F_{\mu\nu}^a F^{a\mu\nu} + \text{tr}\left[(D_\mu \Phi)^\dagger (D^\mu \Phi)\right] - V(\Phi). \]

- \(\Phi(x) = \Phi^a(x) T^a = \Phi^a(x) \sigma^a / 2 \) is the scalar field in the adjoint representation.

- Transformation of the field: \(\Phi(x) \rightarrow U(x) \Phi(x) U(x)^\dagger \).
SU(2) Gauge theory coupled with an adjoint Scalar

- The Lagrangian of the theory:

\[\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} + \text{tr} \left((D_\mu \Phi)^\dagger (D^\mu \Phi) \right) - V(\Phi). \]

- \(\Phi(x) = \Phi^a(x) T^a = \Phi^a(x) \sigma^a / 2 \) is the scalar field in the adjoint representation.

- Transformation of the field: \(\Phi(x) \rightarrow U(x) \Phi(x) U(x)^\dagger \).

- Potential spanned by invariant Casimirs of the gauge group, e.g:

\[V = -\mu^2 \text{tr} \Phi^2 + \frac{\lambda}{2} (\text{tr} \Phi^2)^2. \]

- Center symmetry \(Z_2^U \), Custodial symmetry \(Z_2^\Phi \).
(We look for potentials that allow the BEH effect.)

Split scalar field in vev and fluctuations:

$$\Phi(x) = \langle \Phi \rangle + \phi(x) \equiv w\Phi_0 + \phi(x).$$
Brout-Englert-Higgs Effect

- (We look for potentials that allow the BEH effect.)
- Split scalar field in vev and fluctuations:

\[\Phi(x) = \langle \Phi \rangle + \phi(x) \equiv w\Phi_0 + \phi(x) . \]

- \(\Phi_0 \) is the direction of the vev: \(\Phi_0^a \Phi_0^a = 1 \).
- Choose gauge in which \(\Phi_0 \) is diagonal.
(We look for potentials that allow the BEH effect.)

Split scalar field in vev and fluctuations:

\[\Phi(x) = \langle \Phi \rangle + \phi(x) \equiv w\Phi_0 + \phi(x) . \]

\(\Phi_0 \) is the direction of the vev: \(\Phi_0^a \Phi_0^a = 1 . \)

Choose gauge in which \(\Phi_0 \) is diagonal.

Mass matrix for the gauge fields:

\[(M_A^2)^{ab} = -2(gw)^2 \operatorname{tr} \left([T^a, \Phi_0][T^b, \Phi_0] \right) . \]
Brout-Englert-Higgs Effect

- (We look for potentials that allow the BEH effect.)
- Split scalar field in vev and fluctuations:
 \[\Phi(x) = \langle \Phi \rangle + \phi(x) \equiv w\Phi_0 + \phi(x). \]

- \(\Phi_0 \) is the direction of the vev: \(\Phi_0^a \Phi_0^a = 1 \).
- Choose gauge in which \(\Phi_0 \) is diagonal.
- Mass matrix for the gauge fields:
 \[(M_A^2)^{ab} = -2(gw)^2 \text{tr} \left([T^a, \Phi_0][T^b, \Phi_0] \right). \]

- To see whether a gauge boson acquires a mass we must check if the generator associated commutes with \(\Phi_0 \).
- The relevant breaking pattern lead to a potential with a minimum. In this case \(SU(2) \rightarrow U(1) \).
Gauge invariant operators for the SU(2) adjoint Higgs

Construct operators which expand to a single gauge field in leading order:

\(O^\mu_{1-} = \frac{\partial^\nu}{\partial^2} \text{tr}[\Phi F^{\mu\nu}] \).
Construct operators which expand to a single gauge field in leading order:

- \(O_{1-}^\mu = \frac{\partial_\nu}{\partial^2} \text{tr}[\Phi F^{\mu\nu}] \).
- FMS:

\[
O_{1-}^\mu = -w^2 \text{tr} [\Phi_0 A_{\perp}^\mu] (x) + \mathcal{O}(A^2, \phi) \\
= -w^2 \text{tr} [\Phi_0 (\delta_{\nu}^\mu - \partial^\mu \partial_\nu / \partial^2) A^\nu] (x) + \mathcal{O}(A^2, \phi).
\]
Gauge-invariant operators for the SU(2) adjoint Higgs

Construct operators which expand to a single gauge field in leading order:

- $O_{1-}^\mu = \frac{\partial_\nu}{\partial^2} \text{tr}[\Phi F_{\mu\nu}]$.

- FMS:

\[
O_{1-}^\mu = -w^2 \text{tr}[\Phi_0 A_{\perp}^\mu](x) + O(A^2, \phi) \\
= -w^2 \text{tr}[\Phi_0(\delta^\mu_\nu - \partial^\mu \partial_\nu / \partial^2)A^\nu](x) + O(A^2, \phi).
\]

Scalar channel:

- $O_{0+}(x) = \text{tr}[\Phi^2](x)$.
Gauge invariant operators for the SU(2) adjoint Higgs

Construct operators which expand to a single gauge field in leading order:

- $O_{1-}^{\mu} = \frac{\partial_\nu}{\partial^2} \text{tr}[\Phi F^{\mu\nu}]$.
- FMS:

$$O_{1-}^{\mu} = -w^2 \text{tr}[\Phi_0 A^\mu_\perp](x) + O(A^2, \phi)$$
$$= -w^2 \text{tr}[\Phi_0 (\delta^\mu_\nu - \partial^\mu \partial_\nu / \partial^2) A^\nu](x) + O(A^2, \phi).$$

Scalar channel:

- $O_{0+}(x) = \text{tr}[\Phi^2](x).$
- $H(x) = \Phi_0^a \phi^a(x)$.
- FMS: $O_{0+}(x) = \frac{w^2}{2} + wH(x) + \frac{1}{2} \phi^a(x)\phi^a(x).$
Spectrum for the SU(2) adjoint Higgs

$SU(2)$: only non trivial breaking pattern $SU(2) \rightarrow U(1)$.
Spectrum for the SU(2) adjoint Higgs

$SU(2)$: only non trivial breaking pattern $SU(2) \rightarrow U(1)$.

Perturbation theory spectrum:
- A massive Higgs excitation $m_H^2 = \lambda w^2$.

\[m_H^2 = \lambda w^2. \]
Spectrum for the SU(2) adjoint Higgs

\(SU(2) \): only non trivial breaking pattern \(SU(2) \to U(1) \).

Perturbation theory spectrum:

- A massive Higgs excitation \(m_H^2 = \lambda w^2 \).
- One massless gauge boson.
Spectrum for the SU(2) adjoint Higgs

$SU(2)$: only non trivial breaking pattern $SU(2) \rightarrow U(1)$.

Perturbation theory spectrum:

- A massive Higgs excitation $m_H^2 = \lambda w^2$.
- One massless gauge boson.
- Two massive states with mass $m_A^2 = 2g^2 w^2$.
Spectrum for the SU(2) adjoint Higgs

$SU(2)$: only non trivial breaking pattern $SU(2) \rightarrow U(1)$.

Perturbation theory spectrum:
- A massive Higgs excitation $m_H^2 = \lambda w^2$.
- One massless gauge boson.
- Two massive states with mass $m_A^2 = 2g^2 w^2$.

FMS mechanism:
- A mass for the scalar ground state m_H^2.

[Maas, Sondeenheimer, Toerek-1709.07477 (hep-ph)]
Spectrum for the SU(2) adjoint Higgs

\[SU(2): \text{only non trivial breaking pattern } SU(2) \rightarrow U(1). \]

Perturbation theory spectrum:
- A massive Higgs excitation \(m_H^2 = \lambda w^2 \).
- One massless gauge boson.
- Two massive states with mass \(m_A^2 = 2g^2 w^2 \).

FMS mechanism:
- A mass for the scalar ground state \(m_H^2 \).
- One massless gauge boson (it comes from the first order expansion).
Spectrum for the SU(2) adjoint Higgs

$SU(2)$: only non trivial breaking pattern $SU(2) \to U(1)$.

Perturbation theory spectrum:
- A massive Higgs excitation $m_H^2 = \lambda w^2$.
- One massless gauge boson.
- Two massive states with mass $m_A^2 = 2g^2 w^2$.

FMS mechanism:
- A mass for the scalar ground state m_H^2.
- One massless gauge boson (it comes from the first order expansion).
- A massive scattering state with mass $2m_A^2$ (it comes from an expansion to higher orders).

[Maas,Sondenheimer,Toerek-1709.07477(hep-ph)]
Operator for lattice spectroscopy

- Massless bound state is predicted by FMS.
Operator for lattice spectroscopy

- Massless bound state is predicted by FMS.
- Lattice operator:
 \[B^i(x) = \frac{1}{\sqrt{2 \text{Tr}(\Phi^2)}} \text{Im} \text{Tr} \left(\Phi(\vec{x}, t) U^{jk}(\vec{x}, t) \right) \]

Massless bound state is predicted by FMS.

Lattice operator:

\[B^i(x) = \frac{1}{\sqrt{2 \text{Tr}(\Phi^2)}} \text{Im} \text{Tr}(\Phi(x, t)U^{jk}(x, t)) \]

We give the operator a non-zero momentum via

\[B^j(\vec{p}, t) = \frac{1}{\sqrt{V}} \text{Re} \sum_{\vec{x}} B^j(\vec{x}, t)e^{i\vec{p}\cdot\vec{x}} \]

We chose as momentum the smallest one in the z direction

\[\vec{p}_z = \left(0, 0, \frac{2\pi}{N_z}\right) \]
Transverse and Longitudinal Correlator

We split the correlator in the transverse and the longitudinal part

\[C_\perp(t) = \frac{1}{N_t} \sum_{t'=0}^{L_t-1} \sum_{j=1}^{2} \langle B^j(\vec{p}_z, t') B^j(\vec{p}_z, t + t') \rangle \]

\[C_\parallel(t) = \frac{1}{N_t} \sum_{t'=0}^{L_t-1} \langle B^3(\vec{p}_z, t') B^3(\vec{p}_z, t + t') \rangle \]
Transverse and Longitudinal Correlator

We split the correlator in the transverse and the longitudinal part

\[
C_{\perp}(t) = \frac{1}{N_t} \sum_{t'=0}^{L_t-1} \sum_{j=1}^{2} \langle B^j(\vec{p}_z, t')B^j(\vec{p}_z, t + t') \rangle
\]

\[
C_{\parallel}(t) = \frac{1}{N_t} \sum_{t'=0}^{L_t-1} \langle B^3(\vec{p}_z, t')B^3(\vec{p}_z, t + t') \rangle
\]

We expect the correlators to behave as

\[
C(t) \propto \exp(-Et)
\]
B Longitudinal Correlator at smearing level 0 ($\beta = 4, \kappa = 0.750000, \lambda = 1$)
B Transverse Correlator at smearing level 0 ($\beta = 4, \kappa = 0.750000, \lambda = 1$)
Massless state investigation

For a massless state, we expect

$$E(\vec{P}_z) = |\vec{P}_z| = \frac{2\pi}{16} = \frac{\pi}{8}$$

We use the quantity

$$E_{\text{eff}}(t + 0.5) = \log \left(\frac{C_\perp(t)}{C_\perp(t + 1)} \right)$$

We plot also the expected value, with the corrected cosh behaviour.
Preliminary spectroscopy results

Effective energy at smearing level $0(\beta = 4, \kappa = 0.750000, \lambda = 1)$
Conclusions

We have found very good hints of a massless vector state present in the theory.

Goals:

- Finish to explore the phase diagram, to find the best point for future simulations.
Conclusions

We have found very good hints of a massless vector state present in the theory.

Goals:

- Finish to explore the phase diagram, to find the best point for future simulations.
- Analyze the gauge invariant spectrum of an $SU(2)$ theory with the adjoint Higgs.
We have found very good hints of a massless vector state present in the theory.

Goals:

- Finish to explore the phase diagram, to find the best point for future simulations.
- Analyze the gauge invariant spectrum of an $SU(2)$ theory with the adjoint Higgs.
Conclusions

We have found very good hints of a massless vector state present in the theory.

Goals:

- Finish to explore the phase diagram, to find the best point for future simulations.
- Analyze the gauge invariant spectrum of an $SU(2)$ theory with the adjoint Higgs.

Outlook:

- Extend our analysis to BSM models with larger gauge groups guided by FMS mechanism.
- Make analytic predictions coming from gauge invariant perturbation theory and confront them with the phenomenology. Review: [Maas-1712.04721(hep-ph)]
We have found very good hints of a massless vector state present in the theory.

Goals:

- Finish to explore the phase diagram, to find the best point for future simulations.
- Analyze the gauge invariant spectrum of an $SU(2)$ theory with the adjoint Higgs.

Outlook:

- Extend our analysis to BSM models with larger gauge groups guided by FMS mechanism.
- Make analytic predictions coming from gauge invariant perturbation theory and confront them with the phenomenology. Review: [Maas-1712.04721(hep-ph)]

Thanks!