Spin correlations: Status of spin correlations in $pp \to t\bar{t}$

Bora Isildak on behalf of the CMS Collaboration

ALPS2019: Fourth Alpine LHC Physics Summit 22-27 Apr 2019, Obergurgl (Austria)

26.04.2019

Introduction and Motivation

Bora Isildak

Introduction and Motivation

ALPS2019: Fourth Alpine LHC Physics Summit, 22-27 Apr 2019 Obergurgl (Austria)

Introduction and Motivation

- Top quark decays before hadronization.
- Spins does not decorrelate in this short time
- and the decay particles carry the spin information

Bora Isildak

ALPS2019: Fourth Alpine LHC Physics Summit, 22-27 Apr 2019 Obergurgl (Austria) 3 /19

Introduction and Motivation

- Top quarks produced by strong interaction are unpolarized but QCD causes topquark spins to be correlated at production.
- For low $t\bar{t}$ invariant masses, the production is dominated by the fusion of pairs of gluons with the same helicities
- There are BSM scenarios predicting polarized top quarks, hence affecting the spin correlation.
- Therefore, it is highly important to measure the spin correlations of top quark pairs
- Two methods to measure top spin correlations
 - Direct Measurement: Requires the reconstruction of the $t\bar{t}$ system
 - Indirect Measurement: Angle between two lepton $\Delta \phi(l^- l^+)$

experimentally preferred because lepton angles have excellent resolution

Observables

 θ measured in helicity basis (lepton angle in parent top's rest frame, relative to parent top's direction in $t\bar{t}$ CM

the variable $A_P^{\text{CPV}} = (A_{P+} - A_{P-})/2$ measures possible polarization introduced by a maximally CP-

indirect measurement of top spin correlation

Spin Correlation Coefficient

$$C_{\text{hel}} = -4A_{c_1c_2} \qquad A_{c_1c_2} = \frac{N(c_1c_2 > 0) - N(c_1c_2 < 0)}{N(c_1c_2 > 0) + N(c_1c_2 < 0)}$$
$$c_1 = \cos\theta_{\ell^+}^{\star} \text{ and } c_2 = \cos\theta_{\ell^-}^{\star}$$

Spin Correlation Coefficient

$$\begin{array}{ll} D = -2A_{\cos\varphi} & A_{\cos\varphi} = \frac{N(\cos\varphi > 0) - N(\cos\varphi < 0)}{N(\cos\varphi > 0) + N(\cos\varphi < 0)} \\ \varphi = \angle \left(\hat{\ell}_{+}, \hat{\ell}_{-}\right) \end{array}$$

 θ_{l+}^* and θ_{l-}^* are the helicity angles

Bora Isildak

Observables

CMS 8 TeV Results (unfolded to the parton level)

Asymmetry variable	Data (unfolded)	MC@NLO simulation	NLO, SM	NLO, no spin corr.
$A_{\Delta\phi}$	$0.094 \pm \ 0.005 \pm 0.012$	0.113 ± 0.001	$0.110\substack{+0.006\\-0.009}$	$0.202^{+0.006}_{-0.009}$
$A_{\cos \varphi}$	$0.102 \pm 0.010 \pm 0.012$	0.114 ± 0.001	0.114 ± 0.006	0
$A_{c_1c_2}$	$-0.069 \pm 0.013 \pm 0.016$	-0.081 ± 0.001	-0.080 ± 0.004	0
A_P	$-0.011 \pm 0.007 \pm 0.028$	0	0.002 ± 0.001	
A_P^{CPV}	$0.000 \pm 0.006 \pm 0.005$	0	0	

Bora Isildak

CMS 8 TeV Results

ALPS2019: Fourth Alpine LHC Physics Summit, 22-27 Apr 2019 Obergurgl (Austria)

Asymmetry variable	Data (unfolded)	MC@NLO simulation	NLO, SM	NLO, no spin corr.
$\overline{A_{\Delta\phi}}$	$0.094 \pm \ 0.005 \pm 0.012$	0.113 ± 0.001	$0.110\substack{+0.006\\-0.009}$	$0.202\substack{+0.006\\-0.009}$
$A_{\cos\varphi}$	$0.102 \pm 0.010 \pm 0.012$	0.114 ± 0.001	0.114 ± 0.006	0
$A_{c_1 c_2}$	$-0.069 \pm 0.013 \pm 0.016$	-0.081 ± 0.001	-0.080 ± 0.004	0
A_P	$-0.011 \pm 0.007 \pm 0.028$	0	0.002 ± 0.001	
AP	$0.000 \pm 0.006 \pm 0.005$	0	0	

Bora Isildak

CMS 8 TeV Results

ALPS2019: Fourth Alpine LHC Physics Summit, 22-27 Apr 2019 Obergurgl (Austria)

Asymmetry variable	Data (unfolded)	MC@NLO simulation	NLO, SM	NLO, no spin corr.
$\overline{A_{\Delta\phi}}$	$0.094 \pm 0.005 \pm 0.012$	0.113 ± 0.001	$0.110\substack{+0.006\\-0.009}$	$0.202\substack{+0.006\\-0.009}$
$A_{\cos a}$	$0.102 \pm 0.010 \pm 0.012$	0.114 ± 0.001	0.114 ± 0.006	0
$A_{c_1c_2}$	$-0.069 \pm 0.013 \pm 0.016$	-0.081 ± 0.001	-0.080 ± 0.004	0
A_P	$-0.011 \pm 0.007 \pm 0.028$	0	0.002 ± 0.001	
A _P ^{CPV}	$0.000 \pm 0.006 \pm 0.005$	0	0	•••

Bora Isildak

CMS 8 TeV Results

ALPS2019: Fourth Alpine LHC Physics Summit, 22-27 Apr 2019 Obergurgl (Austria)

Asymmetry variable	Data (unfolded)	MC@NLO simulation	NLO, SM	NLO, no spin corr.
$\overline{A_{\Delta\phi}}$	$0.094 \pm \ 0.005 \pm 0.012$	0.113 ± 0.001	$0.110\substack{+0.006\\-0.009}$	$0.202\substack{+0.006\\-0.009}$
$A_{\cos \varphi}$	$0.102 \pm 0.010 \pm 0.012$	0.114 ± 0.001	0.114 ± 0.006	0
$A_{c_1c_2}$	$-0.069 \pm 0.013 \pm 0.016$	-0.081 ± 0.001	-0.080 ± 0.004	0
A_P	$-0.011 \pm 0.007 \pm 0.028$	0	0.002 ± 0.001	
A_P^{CPV}	$0.000 \pm 0.006 \pm 0.005$	0	0	

Bora Isildak

CMS 8 TeV Results

ALPS2019: Fourth Alpine LHC Physics Summit, 22-27 Apr 2019 Obergurgl (Austria) 9 /19

Fit spin correlation strength as fraction f_{SM} of the SM prediction

$$f = \frac{N_{\rm SM}^{\rm t}}{N_{\rm SM}^{\rm t\bar{t}} + N_{\rm uncor}^{\rm t\bar{t}}} \qquad f \in [0, 1]$$

$$A^{\text{meas}} = fA^{SM} + (1-f)A^{uncor}$$

Variable	$f_{\rm SM} \pm ({\rm stat}) \pm ({\rm syst}) \pm ({\rm theor})$	Total uncertainty
$\overline{A_{\Delta\phi}}$	$1.14 \pm 0.06 \pm 0.13^{+0.08}_{-0.11}$	$+0.16 \\ -0.18$
$A_{\cos\varphi}$	$0.90 \pm 0.09 \pm 0.10 \pm 0.05$	± 0.15
$A_{c_{1}c_{2}}$	$0.87 \pm 0.17 \pm 0.21 \pm 0.04$	± 0.27
$A_{\Delta\phi}$ (vs $M_{t\bar{t}}$)	$1.12 \pm 0.06 \pm 0.08^{+0.08}_{-0.11}$	$+0.12 \\ -0.15$

See Afiq's Talk at YSF!

- Dilepton distribution probes top spin in 3 dimensions
- Leptons follow parent top spin (average polarization given by 3-vectors B^{+/-})
- Relative lepton directions follow 3x3 matrix **C** of spin correlation coefficients

$$\frac{1}{\sigma}\frac{d\sigma}{dx} = \frac{1}{2}(1 + [\text{Coef }.]x)f(x)$$

CMS-PAS-TOP-18-006

Bora Isildak

CMS 13 TeV Results

CMS 13 TeV Results (unfolded to the parton level)

See Afiq's Talk at YSF!

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_1\cos\theta_2} = \frac{1}{2} \left(1 - C\cos\theta_1\cos\theta_2 \right) \log\left(\frac{1}{|\cos\theta_1\cos\theta_2|}\right)$$

CMS 13 TeV Results (unfolded to the parton level)

See Afiq's Talk at YSF!

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\varphi} = \frac{1}{2} (1 - D\cos\varphi)$$
$$D = -(C_{kk} + C_{rr} + C_{nn})/3$$

$$D = -0.237 \pm 0.007 \pm 0.009$$

SM : -0.243

 $f_{\rm SM} = 0.97 \pm 0.05$

Summary of Spin Correlation Fractions

Bora Isildak

Summary of Spin Correlation Fractions

ALPS2019: Fourth Alpine LHC Physics Summit, 22-27 Apr 2019 Obergurgl (Austria) 14/19

New Physics?

 L_{eff} is given in terms of chromo dipole couplings of the top quark to the gluon(s):

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} - \frac{\tilde{\mu}_t}{2} \bar{t} \sigma^{\mu\nu} T^a t G^a_{\mu\nu} - \frac{\tilde{d}_t}{2} \bar{t} i \sigma^{\mu\nu} \gamma_5 T^a t G^a_{\mu\nu}$$

dimensionless chromo-moments:

$$\hat{\mu}_t \equiv \frac{m_t}{g_s} \tilde{\mu}_t, \quad \hat{d}_t \equiv \frac{m_t}{g_s} \tilde{d}_t$$

In the presence of a small new physics (NP) contribution such that $\operatorname{Re}(\hat{\mu}_t) \ll 1$, can be linearly expanded

$$\frac{1}{\sigma} \frac{d\sigma}{d \left| \Delta \phi_{\ell^+ \ell^+} \right|} = \left(\frac{1}{\sigma} \frac{d\sigma}{d \left| \Delta \phi_{\ell^+ \ell^-} \right|} \right)_{\rm SM} + \left(\operatorname{Re}\left(\hat{\mu}_t\right) \left(\frac{1}{\sigma} \frac{d\sigma}{d \left| \Delta \phi_{\ell^+ \ell^-} \right|} \right)_{\rm NP} \right)_{\rm NP}$$

New Physics?

 $\operatorname{Re}(\hat{\mu}_t) = -0.006 \pm 0.024$

corresponding 95% confidence level (C.L.) interval is $-0.053 < \text{Re}(\hat{\mu}_t) < 0.042$

Also, $D = D_{\rm SM} + \operatorname{Re}(\hat{\mu}_t) D_{\rm NP}$

8 TeV	$M_{t\bar{t}} \geqslant 2m_t$	$M_{t \bar{t}} \leqslant 450 { m GeV}$	$M_{t\bar{t}} > 450 \text{ GeV}$
D_{SM} (NLOW) expanded	-0.228(5)	-0.336(2)	-0.130(5)
D_{SM} (NLOW) unexpanded	-0.217(11)	-0.330(6)	-0.120(14)
D_{NP}	-1.712(19)	-1.696(14)	-1.653(20)

W. Bernreuther, Z.G. Si / Physics Letters B 725 (2013) 115–122

$$\operatorname{Re}(\hat{\mu}_t) = -0.014 \pm 0.020$$

corresponding 95% confidence level (C.L.) interval is $-0.053 < \text{Re}(\hat{\mu}_t) < 0.027$

New Physics?

New Physics?

Also, $D = D_{\rm SM} + {\rm Re}\left(\hat{\mu}_t\right) D_{\rm NP}$

8 TeV	$M_{t\bar{t}} \geqslant 2m_t$	$M_{t \bar{t}} \leqslant 450 \; { m GeV}$	$M_{t\bar{t}} > 450 \text{ GeV}$
D_{SM} (NLOW) expanded	-0.228(5)	-0.336(2)	-0.130(5)
D_{SM} (NLOW) unexpanded	-0.217(11)	-0.330(6)	-0.120(14)
D_{NP}	-1.712(19)	-1.696(14)	-1.653(20)

W. Bernreuther, Z.G. Si / Physics Letters B 725 (2013) 115–122

 $\operatorname{Re}(\hat{\mu}_t) = -0.014 \pm 0.020$

corresponding 95% confidence level (C.L.) interval is $-0.053 < \text{Re}(\hat{\mu}_t) < 0.027$

Similarly P^{CPV} is related to $P^{\text{CPV}} = \text{Im}(\hat{d}_t) P^{\text{CPV}}_{\text{NP}}$

from W. Bernreuther, Z.G. Si / Physics Letters B 725 (2013) 115-122 $P_{\rm NP}^{\rm CPV}=0.482\pm0.003$

$\mathrm{Im}(\hat{d}_t) = -0.001 \pm 0.034$

with the corresponding 95% C.L. interval $-0.068 < \text{Im}(\hat{d}_t) < 0.067$

for 13 TeV constraints, again see Afiq's Talk at YSF!

Bora Isildak

New Physics?

Last

- Top quarks produced by strong interaction are unpolarized but QCD causes top-quark spins to be correlated at production.
- There are BSM scenarios predicting polarized top quarks, hence affecting the spin correlation.
- All measurements are in agreement with the SM expectations, and help constrain theories of physics beyond the SM.

