LHC limits on gluinos and squarks in the minimal Dirac gaugino model.

Work in collaboration with:
G. Chalons, M. Goosell, S. Kraml and
S. Williamson

ALPS 2019, Obergurgl, Austria, 26 April 2019

Introduction.

- In the MSSM gauginos (superpartners of the gauge bosons) are majorana particles described by Weyl fermions.
- To have Dirac gaugino masses, new chiral supermultiplets are added. Suggesting an enriched phenomenology.

Some nice features of Dirac gaugino models:

- Dirac gauginos were originally proposed by Fayet (1978) to allow massive gluinos.
- Increased naturalness: supersoft masses do not lead to large correction of the stop mass.
- Enhanced tree level Higgs mass.

Motivation:

- Most of SUSY searches at the LHC are optimised for the MSSM (Minimal SuperSymmetric Model)
- A difference in limits from LHC results is expected as compared to the MSSM when observing gluino and squark production.

We'll set limits on the gluinos and squarks of a MDGSSM, by reinterpreting LHC results.

MSSM

Names		Spin 0	Spin 1/2	Spin 1	$SU(3), SU(2), U(1)_Y$
Quarks	Q u ^c	$ ilde{Q} = (ilde{u}_L, ilde{d}_L) \ ilde{u}_L^c$	(u_L, d_L) u_I^c		(3 , 2 , 1/6) (3 , 1 , -2/3)
$(\times 3 \text{ families})$	d ^c	$\widetilde{d}_L^{\overline{c}}$	и́с		$(\overline{\bf 3}, {\bf 1}, 1/3)$
Leptons $(\times 3 \text{ families})$	L e ^c	$egin{pmatrix} ilde{ u}_{eL}, ilde{e}_{L} \ ilde{e}_{L}^{c} \end{pmatrix}$	$(u_{eL}, e_{L}) \ e^{c}_{L}$		(1, 2, -1/2) (1, 1, 1)
Higgs	Hu	(H_u^+, H_u^0)	$(ilde{H}_u^+, ilde{H}_u^0)$		(1, 2, 1/2)
	H_d	(H_d^0, H_d^-)	$(\tilde{H}_d^0, \tilde{H}_d^-)$		(1 , 2 , -1/2)
Gluons	W_{3lpha}		$\tilde{\boldsymbol{g}}_{\alpha}$	g	(8 , 1 , 0)
W	W_{2lpha}		$ ilde{W}^{\pm}, ilde{W}^{0}$	W^{\pm}, W^{0}	(1 , 3 , 0)
В	W_{1lpha}		Ã	В	(1, 1, 0)
DG-octet	O_{g}	O_{g}	$ ilde{f g}'$		(8, 1 , 0)
DG-triplet	т	$\{T^0, T^{\pm}\}$	$\{\tilde{W}'^{\pm},\tilde{W}'^{0}\}$		(1,3 , 0)
DG-singlet	S	S	Β̃′		(1, 1, 0)

Chiral and gauge multiplet fields in the model

Electroweakino sector.

New Higgs superpotential couplings between the singlet and triplet DG-adjoint fermions and the Higgs higgsino fields:

$$W_{\text{Higgs}} = \mu \, \mathbf{H_u} \cdot \mathbf{H_d} + \frac{\lambda_S}{S} \, \mathbf{H_u} \cdot \mathbf{H_d} + 2 \frac{\lambda_T}{T} \, \mathbf{H_d} \cdot \mathbf{TH_u}.$$

In the MDGGSM, gauginos are purely Dirac, i.e. $M_1=M'_1=M_2=M'_2=0$. m_{1D} and m_{2D} are the bino and wino Dirac masses.

$$\mathcal{L}\supset -rac{1}{2}M_{i}\lambda_{i}\lambda_{i}+h.c.$$
 $\mathcal{L}\supset -m_{iD}\chi_{i}\lambda_{i}+h.c.$

Gluino and squark production (comparison with MSSM).

- ► Squark pair production. t-channel exchange of the Dirac gluino forbids final states with squarks of the same helicity, reducing squark production cross section. —>
- Gluino pair production. Cross section enhanced because there are more gluino-degrees of freedom.
- Gluino-squark production. This is identical to the Majorana case.

Squark production, LHC 13 TeV, m_q=1.5 TeV.

arXiv:1111.4322

Lifetime and mass splitting of binos: motivation of benchmark choices.

Mass splitting between $\tilde{\chi}_{1,2}^0$.

The lifetime of $\tilde{\chi}_2^0$.

Constraints for four benchmark scenarios will be shown:

- ▶ One with small $\tilde{\chi}_{1,2}^0$ mass spliting/long $\tilde{\chi}_2^0$ lifetime: DG1 where λ_S =-0.27 .
- ▶ Three with a large $\tilde{\chi}_{1,2}^0$ mass spliting/short $\tilde{\chi}_2^0$ lifetime: DG2,DG3 with λ_S =-0.74 and DG4 with λ_S =-0.79.

Benchmark scenarios.

Parameters				
	DG1	DG2	DG3	DG4
m_{1D}	200	200	200	200
m_{2D}	500	500	500	1175
μ	400	400	400	400
$\tan \beta$	2	2	2	2
$-\lambda_S$	0.27	0.74	0.74	0.79
$\sqrt{2}\lambda_T$	0.14	0.14	0.14	-0.26
$m_{\tilde{Q}_3}^2$	1.25e7	6.5e6	2.26e6	8.26e6
$m_{\tilde{Q}_1}^2$	6.25e6	6.25e6	6.25e6	6.25e6
m_{3D}	1750	1750	1750	1750

	Masses				
	DG1	$\overline{\mathrm{DG2}}$	DG3	DG4	
$\tilde{\chi}_1^0$	201.35	182.1	181.8	182.4	
$ ilde{\chi}_2^0$	201.72	218.0	216.6	213.2	
$ ilde{\chi}^0_3$	403	400	396	408	
$ ilde{\chi}_4^0$	419	445	441	437	
$ ilde{\chi}_{5}^{0}$	537	536	535	1226	
$ ilde{\chi}_6^0$	548	548	546	1227	
$\tilde{\chi}_1^{\pm}$	400	395	391	398	
$\tilde{\chi}_{2l}^{\pm}$	536	536	534	1224	
$\tilde{\chi}_3^{\pm}$	549	548	547	1229	
$ ilde{t}_1$	3604	2607	1590	2894	
$ ilde{t}_2$	3613	2637	1613	2927	
h_1	124.0	125.0	125.3	125.2	

Small bino mass splitting. Large bino mass splitting. Light winos. Heavy winos.

We scanned over the gluino and squark mass spectrum.

Constraining with two approaches: SMS and Recasting.

Simplified Model Spectrum results

 SModelS: Based on the general procedure to decompose BSM collider signatures presenting a Z2 symmetry into Simplified Model Spectrum (SMS) topologies. (arXiv:1811.10624)

Full recasting.

- This approach involves full chain event simulation, performed with a Madgraph-Pythia8-Delphes pipeline.
- Recasting and analysis performed with MadAnalysis

Results from SModelS.

Gluino vs squark masses map of the SModelS limits. Hard coloured points means exclusion.

T1:
$$pp \to \tilde{g}\tilde{g}$$
, $\tilde{g} \to q\bar{q}\tilde{\chi}_1^0$; T1tttt: $pp \to \tilde{g}\tilde{g}$, $t\bar{t}\tilde{\chi}_1^0$; T2: $pp \to \tilde{q}\tilde{q}^{(*)}$, $\tilde{q} \to q\tilde{\chi}_1^0$; TChiWW: $pp \to \tilde{\chi}_i^{\pm}\tilde{\chi}_i^{\pm}$, $\tilde{\chi}_i^{\pm} \to W^{\pm}\tilde{\chi}_1^0$

Due to the complexity of the model, constraints from SMS are weaker. E.g. The effective cross section from the T1 topology above is roughly 1% of the total.

ATLAS SUSY 2016-07: The recasted analysis.

Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb⁻¹ of \sqrt{s} =13 TeV *pp* collision data with the ATLAS detector

ATLAS analyses, 13 TeV

Analysis	Short Description	Implemented by	Code	Validation note	Version
⇒ATLAS-SUSY-2015-06	Multijet + missing transverse momentum	S. Banerjee, B. Fuks, B. Zaldivar	Inspire	⇒ PDF	v1.3/Delphes3
♥ATLAS-SUSY-2016-07	Multijet + missing transverse momentum (36.1 fb-1)	G. Chalons, H. Reyes- Gonzalez	☐→ Inspire	⇒ PDF ⇒ Pythia files	v1.7/Delphes3
⇒ATLAS-EXOT-2015-03	Monojet (3.2 fb-1)	D. Sengupta	☐⇒ Inspire	⇒ PDF	v1.3/Delphes3
⇒ATLAS-EXOT-2016-25	Mono-Higgs (36.1 fb-1)	S. Jeon, Y. Kang, G. Lee, C. Yu	Inspire	⇒ PDF	v1.6/Delphes3
⇒ATLAS-EXOT-2016-27	Monojet (36.2 fb-1)	D. Sengupta	☐→ Inspire	⇔ PDF	v1.6/Delphes3
⇒ATLAS-EXOT-2016-32	Monophoton (36.1 fb-1)	S. Baek, T.H. Jung	⊡→ Inspire	⇒ PDF	v1.6/Delphes3
⇒ATLAS- CONF-2016-086	b-pair + missing transverse momentum	B. Fuks & M. Zumbihl	⊡→ Inspire	⇒ PDF	v1.6/Delphes3

http://madanalysis.irmp.ucl.ac.be/wiki/PublicAnalysisDatabase

Results from Recasting : DG1-3 vs MSSM1 (light winos).

Results from Recasting: DG4 vs MSSM4 (heavy winos).

Conclusions.

- Bounds on squarks and gluinos were found for 4 benchmark scenaros of the MDGSSM and compared with equivalent MSSM scenarios.
- Results were as expected from the differences between MDGSSM and MSSM regarding gluino and squark production.
- We observed relaxed contstraints in the scenarios with large bino mass-splitting due to extra steps in the decay chain.

Outlook.

- Study limits on the electroweak sector.
- Look for scenarios where the LSP (dark matter candidate) has a relic density equal or below the one measured by Planck.
- Study scenarios with small bino mass splitting in the light of Long Lived Particle searches.

CLs for DG4 with k-factors

Electroweakino mass matrices in the MDGSSM.

$$\mathcal{M}_{N} = \begin{pmatrix} 0 & m_{1D} & 0 & 0 & \frac{\sqrt{2}\lambda_{S}}{g'} m_{Z}s_{W}s_{\beta} & \frac{\sqrt{2}\lambda_{S}}{g'} m_{Z}s_{W}c_{\beta} \\ m_{1D} & 0 & 0 & 0 & -m_{Z}s_{W}c_{\beta} & m_{Z}s_{W}s_{\beta} \\ 0 & 0 & 0 & m_{2D} & -\frac{\sqrt{2}\lambda_{T}}{g} m_{Z}c_{W}s_{\beta} & -\frac{\sqrt{2}\lambda_{T}}{g} m_{Z}c_{W}c_{\beta} \\ 0 & 0 & m_{2D} & 0 & m_{Z}c_{W}c_{\beta} & -m_{Z}c_{W}s_{\beta} \\ \frac{\sqrt{2}\lambda_{S}}{g'} m_{Z}s_{W}s_{\beta} & -m_{Z}s_{W}c_{\beta} & -\frac{\sqrt{2}\lambda_{T}}{g} m_{Z}c_{W}s_{\beta} & m_{Z}c_{W}c_{\beta} & 0 & -\mu \\ \frac{\sqrt{2}\lambda_{S}}{g'} m_{Z}s_{W}c_{\beta} & m_{Z}s_{W}s_{\beta} & -\frac{\sqrt{2}\lambda_{T}}{g} m_{Z}c_{W}c_{\beta} & -m_{Z}c_{W}s_{\beta} & -\mu & 0 \end{pmatrix}$$

$$\mathcal{M}_{\mathcal{C}} = \left(egin{array}{cccc} 0 & m_{2D} & rac{2\lambda_{T}}{g} m_{W} c_{eta} \ m_{2D} & 0 & \sqrt{2} m_{W} s_{eta} \ -rac{2\lambda_{T}}{g} m_{W} s_{eta} & \sqrt{2} m_{W} c_{eta} \end{array}
ight)$$

Binos, Winos, Higgsinos.

Best signal region evolution.

