Exotic bottomonium-like hadrons

(LPI, Moscow)

In collab. with V.Baru, E.Epelbaum, A.Filin, C.Hanhart, Q.Wang

ALPS2019, Obergurgl, Austria, 22 - 27 April 2019

Spectrum of charmonium

Spectrum of bottomonium

Predictions for $W_{b,J}$'s

Conclusions

If not $\bar{Q}Q$ then what? Proposals...

- Tetraquark
 - Compact object made of $(Qq)_{\bar{3}}$ and $(\bar{q}\bar{Q})_3$
- Hybrid

Compact object made of $(Q\bar{Q})_8$ + gluons

• Hadro-Quarkonium

 $(Q\bar{Q})_1$ surrounded by light quarks

• Hadronic Molecule

Extended object made of $(\bar{Q}q)_1$ and $(\bar{q}Q)_1$

Hadronic molecules

Molecule = large probability to observe resonance in hadron-hadron channel

- Proximity of open-flavour thresholds
 ⇒ large admixture of meson-meson component
- Bound state/virtual state/above-threshold resonance/CC pole

 dynamical problem
- Binding forces origins
 ⇒ different models
- Free parameters fixing \implies combined analysis of exp. data in all channels

Predictions for $W_{b,J}$'s

Conclusions

Two-pion decays of $\Upsilon(10860)$

Predictions for $W_{b,J}$'s

Conclusions

Two-pion decays of $\Upsilon(10860)$

(日本) (四) (日本) (日本)

Near-threshold states in πh_b channels (Belle 2012)

Data consistent with two structures at $B\bar{B}^*$ and $B^*\bar{B}^*$ thresholds

Predictions for $W_{b,J}$'s

Conclusions

Decays of $\Upsilon(10860)$

Bondar et al. 2011

<□> <□> <□> <□> <=> <=> <=> <=> <=> <

 7/21

Predictions for $W_{b,J}$'s

Conclusions

Spin partners W_{bJ} (J = 0, 1, 2)

8/21

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Predictions for $W_{b,J}$'s

Conclusions

W_{bJ} 's in radiative decays of $\Upsilon(10860)$

9/21

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Data analysis for Z_b 's

Predictions for $W_{b,J}$'s

Conclusions

W_{bJ} 's in radiative decays of $\Upsilon(10860)$

9/21

(本間) (本語) (本語) (語)

Data analysis for Z_b 's

Predictions for $W_{b,J}$'s

Conclusions

W_{bJ} 's in radiative decays of $\Upsilon(10860)$

□ › 《♬ › 《 트 › 《 트 › 토 = ∽ 오... 9/21

Data analysis for Z_b 's

Predictions for $W_{b,J}$'s

Conclusions

W_{bJ} 's in radiative decays of $\Upsilon(10860)$

Building common EFT for Z_b 's and W_{bJ} 's

- HQSS in potential \Longrightarrow parameter $\Lambda_{
 m QCD}/m_b \ll 1$
- Typical scale generated by coupled-channel dynamics

 $p_{\mathrm{typ}} = \sqrt{m_B \delta} \simeq 500 \; \mathrm{MeV} \qquad \delta = m_{B^*} - m_B \approx 45 \; \mathrm{MeV}$

is soft scale (hard scale $\Lambda \simeq 1$ GeV) \Longrightarrow parameter $p_{\rm typ}/\Lambda \lesssim 1$

Building common EFT for Z_b 's and W_{bJ} 's

- HQSS in potential \Longrightarrow parameter $\Lambda_{
 m QCD}/m_b \ll 1$
- Typical scale generated by coupled-channel dynamics

 $p_{
m typ} = \sqrt{m_B \delta} \simeq 500 \; {
m MeV} \qquad \delta = m_{B^*} - m_B \approx 45 \; {
m MeV}$

is soft scale (hard scale $\Lambda \simeq 1$ GeV) \Longrightarrow parameter $p_{\rm typ}/\Lambda \lesssim 1$

Then

- Pionic dynamics (no additional parameters!) is to be treated explicitly
- *D* waves from OPE are important
- Convergence of EFT has to be a special concern

Building common EFT for Z_b 's and W_{bJ} 's

- HQSS in potential \Longrightarrow parameter $\Lambda_{
 m QCD}/m_b \ll 1$
- Typical scale generated by coupled-channel dynamics

 $p_{
m typ} = \sqrt{m_B\delta} \simeq 500 \; {
m MeV} \qquad \delta = m_{B^*} - m_B pprox 45 \; {
m MeV}$

is soft scale (hard scale $\Lambda \simeq 1$ GeV) \Longrightarrow parameter $p_{\rm typ}/\Lambda \lesssim 1$

Then

- Pionic dynamics (no additional parameters!) is to be treated explicitly
- *D* waves from OPE are important
- Convergence of EFT has to be a special concern
 - S-to-D $\mathcal{O}(p^2)$ CT is promoted from NLO to LO \implies improved renormalisability
 - S-to-S $\mathcal{O}(p^2)$ CT is included explicitly \implies almost complete NLO [up to (small?) long-range two-pion exchange] $\equiv = \circ \circ \circ \circ$

Coupled-channel problem

Elastic potential:

 $V_{\text{el-el}} = V_{\text{CT}}(\text{to order } O(p^0))$

Coupled channels:

$$1^{+-}: B\bar{B}^{*}(^{3}S_{1}, -), B^{*}\bar{B}^{*}(^{3}S_{1})$$

$$0^{++}: B\bar{B}(^{1}S_{0}), B^{*}\bar{B}^{*}(^{1}S_{0})$$

$$1^{++}: B\bar{B}^{*}(^{3}S_{1}, +)$$

$$2^{++}: B^{*}\bar{B}^{*}(^{5}S_{2})$$

Coupled-channel problem

Elastic potential:

$$V_{\text{el-el}} = V_{\text{CT}}(\text{to order } O(p^2)) + V_{\pi}$$

Coupled channels:

$$\begin{aligned} 1^{+-} &: B\bar{B}^*({}^3S_1, -), B^*\bar{B}^*({}^3S_1), B\bar{B}^*({}^3D_1, -), B^*\bar{B}^*({}^3D_1) \\ 0^{++} &: B\bar{B}({}^1S_0), B^*\bar{B}^*({}^1S_0), B^*\bar{B}^*({}^5D_0) \\ 1^{++} &: B\bar{B}^*({}^3S_1, +), B\bar{B}^*({}^3D_1, +), B^*\bar{B}^*({}^5D_1) \\ 2^{++} &: B^*\bar{B}^*({}^5S_2), B\bar{B}({}^1D_2), B\bar{B}^*({}^3D_2), \\ & B^*\bar{B}^*({}^1D_2), B^*\bar{B}^*({}^5D_2), B^*\bar{B}^*({}^5G_2) \end{aligned}$$

Lippmann-Schwinger equation ($V^{\text{eff}} = V_{\text{el-el}} + \sum_{\text{inel}} V_{\text{el-inel-el}}$):

$$T_{\alpha\beta}(M,\boldsymbol{p},\boldsymbol{p}') = V_{\alpha\beta}^{\text{eff}}(\boldsymbol{p},\boldsymbol{p}') - \sum_{\gamma} \int \frac{d^3q}{(2\pi)^3} V_{\alpha\gamma}^{\text{eff}}(\boldsymbol{p},\boldsymbol{q}) G_{\gamma}(M,\boldsymbol{q}) T_{\gamma\beta}(M,\boldsymbol{q},\boldsymbol{p}')$$

Combined fit to the data for Z_b 's

Results and conclusions for Z_b 's

- Description of data is nearly perfect ($\chi^2/d.o.f = 0.83$)
- Parameters (LEC's and couplings) are extracted directly from data
- Data are compatible with HQSS
- Effect from (long range) pion exchange is visible
- $B\bar{B}^*-B^*\bar{B}^*$ transitions:
 - Enhanced by pions
 - Not supported by data (surprise!)
 - Tamed by S-to-D contact terms

Results and conclusions for Z_b 's

- Description of data is nearly perfect ($\chi^2/{\rm d.o.f}=0.83)$
- Parameters (LEC's and couplings) are extracted directly from data
- Data are compatible with HQSS

Apply the same EFT to W_{bJ} 's

- $B\bar{B}^*$ - $B^*\bar{B}^*$ transitions:
 - Enhanced by pions
 - Not supported by data (surprise!)
 - Tamed by S-to-D contact terms

Predicted line shapes for W_{b0}

Predicted line shapes for W_{b1}

< □ > < @ > < 글 > < 글 > 로) = 少 Q ↔ 16/21

Predicted line shapes for W_{b2}

Predicted relations between partial decay widths

Predicted partial branching fractions (not considered channels neglected):

J^{PC}	$B\bar{B}$	$B\bar{B}^*$	$B^*\bar{B}^*$	$\chi_{b0}(1P)\pi$	$\chi_{b0}(2P)\pi$	$\chi_{b1}(1P)\pi$	$\chi_{b1}(2P)\pi$	$\chi_{b2}(1P)\pi$	$\chi_{b2}(2P)\pi$	$\eta_{b0}(1S)\pi$	$\eta_{b0}(2S)\pi$
0^{++}	0.73	_	0.14	—	—	0.05	0.06	—	—	0.002	0.01
1^{++}	—	0.76	_	0.03	0.06	0.02	0.04	0.04	0.05		—
2^{++}	0.06	0.07	0.54	—	—	0.03	0.06	0.09	0.16	—	—

Predicted ratios of partial widths:

$$\Gamma_{B\bar{B}^*(^{3}S_{1})}^{1++}:\Gamma_{B^*\bar{B}^*(^{5}S_{2})}^{2++}:\Gamma_{B\bar{B}(^{1}S_{0})}^{0++}:\Gamma_{B^*\bar{B}^*(^{1}S_{0})}^{0++}\approx 15:12:5:1$$

$$\Gamma_{B\bar{B}(^{1}D_{2})}^{2^{++}}:\Gamma_{B\bar{B}^{*}(^{3}D_{2})}^{2^{++}}:\Gamma_{B^{*}\bar{B}^{*}(^{1}S_{0})}^{0^{++}}\approx3:3:2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの() 18/21

Conclusions

Pole positions (mirror poles not shown)

J^{PC}	State	Threshold	E_B w.r.t. threshold, [MeV]	Residue at pole
1^{+-}	Z_b	$B\bar{B}^*$	$(-2.3 \pm 0.5) - i(1.1 \pm 0.1)$	$(-1.2 \pm 0.2) + i(0.3 \pm 0.2)$
1^{+-}	Z'_b	$B^*\bar{B}^*$	$(1.8 \pm 2.0) - i(13.6 \pm 3.1)$	$(1.5 \pm 0.2) - i(0.6 \pm 0.3)$
0^{++}	W_{b0}	$B\bar{B}$	$(2.3 \pm 4.2) - i(16.0 \pm 2.6)$	$(1.7 \pm 0.6) - i(1.7 \pm 0.5)$
0^{++}	W_{b0}'	$B^*\bar{B}^*$	$(-1.3 \pm 0.4) - i(1.7 \pm 0.5)$	$(-0.9 \pm 0.3) - i(0.3 \pm 0.2)$
1^{++}	W_{b1}	$B\bar{B}^*$	$(10.2 \pm 2.5) - i(15.3 \pm 3.2)$	$(1.3 \pm 0.2) - i(0.4 \pm 0.2)$
2^{++}	W_{b2}	$B^*\bar{B}^*$	$(7.4 \pm 2.8) - i(9.9 \pm 2.2)$	$(0.7 \pm 0.1) - i(0.3 \pm 0.1)$

- Relevant pole = pole with the shortest path to the physical region
- Riemann sheet is fixed by combination of signs of Im(p) for all channels
- Relevant pole can be bound state, virtual state, resonance
- Virtual state enhances threshold cusp
- Resonance distorts line shape above threshold (hump for nearby pole)

Conclusion: All Z_b 's and W_{bJ} 's are resonances (without pions — virtual states)

Role of pions

- Blue dashed line prediction of the pionless theory
- Black solid line prediction of the full theory with pions

Conclusions

EFT approach to near-threshold molecular states:

- Compatible with constraints from unitarity, analiticity, HQSS
- Incorporates all most relevant types of interactions and scales
- Able to explain existing data on $Z_b(10610)$ and $Z_b(10650)$
- Suitable to predict in parameter-free way spin partners W_{bJ}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Conclusions

Phenomenological approach based on molecular picture:

• Compatible with constraints from unitarity, analiticity, HQSS

• Able to explain existing data on $\mathbb{Z}_b(10010)$ and $\mathbb{Z}_b(10000)$

• Suitable to predict in parameter-free way spin partners W_{bJ}

Conclusions

Phenomenological approach based on molecular picture:

• Compatible with constraints from unitarity, analiticity, HQSS

Able to explain existing data on $\mathbb{Z}_b(10010)$ and $\mathbb{Z}_b(10000)$

• Suitable to predict in parameter-free way spin partners W_{bJ}

Further theoretical developments needed:

- Complete NLO to improve theoretical accuracy
- Pion FSI to improve parameters extraction from data
- Inclusion of w.f. compact component to treat isoscalar molecules
- Extension to SU(3) flavour group for light quarks to predict molecules with strange quark
- Tests of accuracy of HQSS (especially in c-sector) to better control theoretical uncertainties

Theoretical uncertainty estimate

Red curve: complete LO Black curve: (almost) complete NLO

$$X^{(\nu)}(Q) = \sum_{n=0}^{\nu} \alpha_n \left(\frac{p_{\text{typ}}}{\Lambda}\right)^n \quad \underset{\text{NLO vs LO}}{\Longrightarrow} \quad \delta E \simeq E_{\text{typ}} \frac{p_{\text{typ}}}{\Lambda} \simeq 15 \frac{500}{1000} \simeq 7.5 \text{ MeV}$$

Complex ω -plane

