

A prime time for Z'

Etienne Dreyer edreyer@cern.ch

The search for high mass dilepton resonances in Run II data from ATLAS

ALPS 2019 Obergurgl, April 24

Preprint: *arXiv*:1903.06248 Material: *EXOT*-2018-08 HEPData: *record*/88425

 $N_{\rm obs} = \sigma \times A \epsilon \times Ldt$

Luminosity++ 25-139 fb⁻¹

LHCb

CMS

ATLAS @ LHC Run 2

ATLAS

 $m_{\ell\ell}^{2} = (P_{\ell_{1}} + P_{\ell_{2}})_{\alpha}(P_{\ell_{1}} + P_{\ell_{2}})^{\alpha}$

*• *opposite-charge required for muon pairs*

Run Number: 327862, Event Number: 1045863550

Date: 2017-06-26 10:52:22 CEST

Highest inv. mass muon pair $m_{\mu\mu} = 2.75 \text{ TeV}$ 2017

Run Number: 336852, Event Number: 1440436043

Date: 2017-09-29 11:44:35 CEST

Highest inv. mass electron pair $m_{ee} = 4.06 \text{ TeV}$ 2017

Statistical significance vs. mediator mass...

Channel	$p_0 \ (\text{local}) \ [\sigma]$	p_0 (global) $[\sigma]$	$m_X[\text{GeV}]$	Γ/m_X [%]
 <i>ee</i>	2.9	0.1	774	0
 μμ	2.4	0.3	267	0
 	2.3	$\lesssim 0$	264	0

Cross section upper limits vs. mediator mass

13

Implications for a Heavy Vector Triplet Z' • Excluded cross sections \implies excluded couplings excluded Lepton coupling g Observed ATLAS 0.8 √s = 13 TeV Z'_{HVT}→ II 0.6 139 fb⁻¹ 0.4 0.2 0 -0.2 -0.4 -0.6 3 TeV $g_h = 0$ et chided 4 TeV -0.8 5_.TeV -0.6 -0.4 -0.2 0.2 0.8 -0.8 0.4 0.6 0 Quark coupling g_a

No significant deviation from the SM observed

Limits on cross section of generic signal can be readily reinterpreted to constrain various models (Z'_{DM}, spin-0, spin-2, ...

Bonus

Event selection

<u>Electrons:</u>

ID tracks + energy clusters in EMCal no charge sign requirement lowest unprescaled 2e trigger

 $E_T > 30 \text{ GeV}$ $|\eta| < 1.37 \text{ or } 1.52 < |\eta| < 2.47$ $|d_0/\sigma(d_0)| < 5$ $|z_0 \sin \theta| < 0.5 \text{ mm}$ medium identification working point (>92% efficient for $E_T > 80 \text{ GeV}$)

<u>Muons:</u>

ID tracks + MS tracks muons opposite charge lowest unprescaled 1µ trigger $p_T > 30 \text{ GeV}$ $|\eta| < 2.5$ $|d_0/\sigma(d_0)| < 3$ $|z_0 \sin \theta| < 0.5 \text{ mm}$ high-pT identification working point

(require 3 hits in precision MS tracking layers) (69% – 64% efficient from 1.0 TeV – 2.5 TeV)

require σ(q/p) below "good muon" threshold (from ~100% efficient at 1 TeV to 93% at 2.5 TeV)

"gradient" isolation working point

"fixed cut tight track only" isolation working point

<u>Event-level</u>: Make pair out of highest p_T (same flavour) leptons in event

Background model details

$$f_{\ell\ell}(m_{\ell\ell}) = f_{\text{BW},Z}(m_{\ell\ell}) \cdot \left(1 - x^c\right)^b \cdot x^{\sum_{i=0}^3 p_i \log(x)^i}$$

100				
$r = \frac{m_{\ell\ell}}{2}$	Parameter	ee channel	$\mu\mu$ channel	
$\lambda = \sqrt{c}$	a	178000 ± 400	138700 ± 400	normalization
VS	b	1.5 ± 1.0	11.8 ± 0.5	
(1, ee	p_0	-12.38 ± 0.09	-7.38 ± 0.12	
$c = \begin{cases} c \\ 1/2 & c \\ c \\ 1/2 & c \\ c$	p_1	-4.295 ± 0.014	-4.132 ± 0.017	
(175, μμ	p_2	-0.9191 ± 0.0027	-1.0637 ± 0.0029	
b, p_i free	p_3	-0.0845 ± 0.0005	-0.1022 ± 0.0005	

- Function chosen based on performance on smoothed simulated SM background
- Potential mismodelling is accounted for by measuring difference between functional fit and smoothed simulated SM background
- The magnitude of this "spurious signal" then defines the 1σ pull of a nuisance parameter multiplying the signal component
- Extra function parameter p_4 available if it significantly improves (> 2σ) likelihood of fit to data \Rightarrow not needed in 139 fb⁻¹ fit

Systematics

Uncertainty source	Dieleo	etron	Dimuon	
for m_X [GeV]	300	5000	300	5000
Spurious signal	$\pm 12.5 (12.0)$	$\pm 0.1 (1.0)$	$\pm 11.7 (11.0)$	$\pm 2.1 \ (2.2)$
Lepton identification	$\pm 1.6 \ (1.6)$	$\pm 5.6 (5.6)$	± 1.8 (1.8)	$^{+25}_{-20} \begin{pmatrix} +25\\ -20 \end{pmatrix}$
Isolation	$\pm 0.3 (0.3)$	$\pm 1.1 \ (1.1)$	$\pm 0.4 (0.4)$	± 0.4 (0.5)
Luminosity	$\pm 1.7 (1.7)$	$\pm 1.7 \ (1.7)$	$\pm 1.7 (1.7)$	$\pm 1.7 \ (1.7)$
Electron energy scale	$ \begin{array}{c} -1.7 \\ -4.0 \end{array} \begin{pmatrix} +1.0 \\ -1.8 \end{pmatrix} $	$^{+0.1}_{-0.4} \ (\pm 0.8)$	-	-
Electron energy resolution	$^{+7.9}_{-8.3}$ $\begin{pmatrix} +1.1\\ -0.9 \end{pmatrix}$	$^{+0.4}_{-0.9}~(\pm 0.1)$	-	-
Muon ID resolution	-	-	$^{+0.8}_{-2.3} \begin{pmatrix} +0.3\\ -0.8 \end{pmatrix}$	$^{+0.6}_{-0.4} \begin{pmatrix} +0.5\\ -0.3 \end{pmatrix}$
Muon MS resolution	_	-	$^{+2.8}_{-3.8}$ $\begin{pmatrix} +1.0\\ -1.3 \end{pmatrix}$	$\pm 2.4 \ (2.1)$
'Good muon' requirement	_	-	$\pm 0.6 (0.6)$	$^{+55}_{-35} \begin{pmatrix} +55\\ -35 \end{pmatrix}$

Impact on signal strength from ±1σ pull on nuisance parameter

Additional 2D p-value scans

Channel	Excess		
	$p_0 [\sigma]$	$m_X \; [\text{GeV}]$	$\Gamma_X/m_X \ [\%]$
ee	3.0	773	2.5
$\mu\mu$	2.5	268	2.5
$\ell\ell$	2.3	264	0
		- ,	
	$p_0 [\sigma]$	$m_X \; [\text{GeV}]$	Γ_X/m_X [%]
ee	-3.2	1957	4.0
$\mu\mu$	-2.8	349	8.5
$\ell\ell$	-2.9	1958	3.0

22

Channel-wise cross section limits

Selection efficiency

Efficiency consistent across spin cases within 4% (absolute)

Relative invariant mass resolution

Implications for a Heavy Vector Triplet Z'

► Excluded cross sections ⇒ excluded couplings

