

Latest results from the NA62 experiment at CERN

On behalf of the NA62 collaboration

Nicolas Lurkin

School of Physics and Astronomy, University of Birmingham Alps 2019, 26-04-2019

Outline

- **The NA62 experiment and detector**
- $\Box \quad K^+ \to \pi^+ \nu \overline{\nu} \text{ results}$
- **LNV results**
- **Dark photon searches**

The NA62 experiment and detector

The NA62 Experiment Fixed target Kaon experiment at CERN SPS

NA62 Beam and Detector

Bee

- NA62:
 - Main goal is $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})$
 - Fixed target
 - > In-flight decay technique

NA62 Beam & Detector

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ results

The $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Process

Highly suppressed:

- FCNC process forbidden at tree level
- CKM suppression

$$s
ightarrow d$$
 coupling, $BR \sim |V_{ts}V_{td}|^2$

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Analysis

Selection criteria

- Single track topology
- \succ π^+ identification
- Photon rejection
- Multi-track rejection

Performances

- $\succ \varepsilon_{\mu^+} = 1 \cdot 10^{-8}$ (64% π^+ efficiency)
- $\succ \varepsilon_{\pi^0} = 3 \cdot 10^{-8}$

$$\succ \sigma(\mathrm{m}^2_{\mathrm{miss}}) = 1 \cdot 10^{-3} \,\mathrm{GeV}^2/c^4$$

 $\succ \sigma_t \sim \mathcal{O}(100 \text{ ps})$

Signal region

- → $15 < P_{\pi^+} < 35 \text{GeV}/c$
- $m_{\text{miss}}^2 = (\mathbf{P}_{\text{K}} \mathbf{P}_{\pi})^2 \text{ in 3 ways:}$
 - $> m_{\rm miss}^2$ (STRAW, GTK)
 - $> m_{\rm miss}^2$ (RICH, GTK)
 - $> m_{\rm miss}^2$ (STRAW, beam)

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Background Summary

	$K^+ o \pi^+ \pi^0(\gamma)$ (Data driven)	Process	Expected events (R1+R2)
	Control region: 1 observed $1.46 \pm 0.16_{stat} \pm 0.06_{syst}$ expected	$K^+ \to \pi^+ \nu \bar{\nu} \ (SM)$	$0.267 \pm 0.001_{stat} \\ \pm 0.020_{syst} \pm 0.032_{ext}$
	$K^+ o \mu^+ u_\mu(\gamma)$ (Data driven)	Total Background	$0.152^{+0.092}_{-0.033}\Big _{\text{stat}} \pm 0.013_{\text{syst}}$
	Control region: 2 observed $1.02 + 0.16_{stat} + 0.31_{syst}$ expected	$K^+ \to \pi^+ \pi^0(\gamma)$	$0.064 \pm 0.007_{stat} \pm 0.006_{syst}$
	$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_a$ (MC)	$K^+ \to \mu^+ \nu(\gamma)$	$0.020 \pm 0.003_{stat} \pm 0.006_{syst}$
\succ	600M MC decays	$K^+ \to \pi^+ \pi^+ \pi^-$	$0.002 \pm 0.001_{stat} \pm 0.002_{syst}$
≻	Good agreement across 5 validation samples	$K^+ \to \pi^+ \pi^- e^+ \nu$	$0.013^{+0.017}_{-0.012}\Big _{\text{stat}} \pm 0.009_{\text{syst}}$
	Upstream background	$K^+ \to \pi^0 \ell^+ \nu \ (\ell = \mu, e)$	< 0.001
	(accidental and interactions)	$K^+ \to \pi^+ \gamma \gamma$	< 0.002
		Upstream background	$0.050^{+0.090}_{-0.030}\Big _{\rm stat}$

- Data driven
- Geometrical and Kaon-pion matching cuts effective
- Addition of a copper block in the beam line in 2017
- Installation of a new final collimator in 2018

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Results

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ 2017 update

Higher beam intensity

2016-like selection

- Comparable performances
- Better pileup treatment in IRC/SAC
- Improved LKr reconstruction
- > 40% better π^0 rejection (does not depend on intensity)
- Slightly improved usage of RICH variables
 No effect from intensity on π efficiency and μ rejection.

Expectations

- > $N_K = 1.3(1) \times 10^{12} (\sim 10 \times 2016)$ from $\pi^+ \pi^0$
- > $SES = (0.34 \pm 0.04) \times 10^{-10}$ (scales linearly with intensity)
- Expected SM $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ events: 2.5 \pm 0.4

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ 2017 update

Background studies ongoing, including possible intensity related effects Expected events

Process	Expected events
$K^+ \to \pi^+ \pi^0(\gamma)$	$0.35\pm0.02_{stat}\pm0.03_{syst}$
$K^+ \to \mu^+ \nu(\gamma)$	$0.16\pm0.01_{stat}\pm0.05_{syst}$
$K^+ \to \pi^+ \pi^+ \pi^-$	$0.015 \pm 0.008_{stat} \pm 0.015_{syst}$
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$	$0.22 \pm 0.08_{stat}$
$K^+ \to \pi^0 \ell^+ \nu$ $(\ell = \mu, e)$	$0.012\pm0.012_{syst}$
$K^+ \to \pi^+ \gamma \gamma$	$0.005\pm0.005_{syst}$
Upstream Bckg.	Ongoing

Detailed comparison of data and background models

- Shape depends on pion momentum
- Background distributions normalised separately to background regions. Signal normalised to expected SM events.

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Summary

- **One event observed in Region 2 in 2016**
- **The result is compatible with the Standard Model**
 - > $BR(K^+ \to \pi^+ \nu \overline{\nu}) < 14 \times 10^{-10} @ 95\% CL$
 - Published in [Phys. Lett. B 791 (2019) 156-166]
- Decay in flight technique is working!

❑ Analysis of 2017 data is ongoing.

- Analysis largely similar to 2016
- Expect about a factor 10 of improvement (from statistics)
- Signal-over-background ratio do not degrade with intensity

LNV results

LNV processes $K^+ \rightarrow \pi^- \ell^+ \ell^+$

Violation of lepton number predicted by some BSM models (e.g. Majorana Neutrino)

Previous exp. results (@90% CL):
▶BNL E865: [PRL 85 2877 (2000)]
$$\mathcal{B}(K^+ \to \pi^- e^+ e^+) < 6.4 \cdot 10^{-10}$$
▶NA48/2: [Phys. Lett. B769 67 (2017)]
 $\mathcal{B}(K^+ \to \pi^- \mu^+ \mu^+) < 8.6 \cdot 10^{-11}$

NA62 search:

- Subset of 2017 data: ~3 months of data taking
- Blind analysis procedure
- Normalization from equivalent SM channels
- Main source of background from π^+ mis-identification and π^+ decays in flight
 - Special MC with enriched decay in flight
 + data-driven approach

Search for $K^+ \rightarrow \pi^- e^+ e^+$

Search for $K^+ \rightarrow \pi^- \mu^+ \mu^+$

Nicolas Lurkin, Alps 2019, 26-04-2019

LNV Summary

- **☐** Improved world limit for $K^+ \to \pi^- e^+ e^+$ and $K^+ \to \pi^- \mu^+ \mu^+$ decays in subset of 2017 data
 - Very low background (<1) searches in both cases</p>
 - > $\mathcal{B}(K^+ \to \pi^- e^+ e^+) < 2.2 \times 10^{-10}$ (previously 6.4 × 10⁻¹⁰ E865)
 - > $\mathcal{B}(K^+ \to \pi^- \mu^+ \mu^+) < 4.2 \times 10^{-11}$ (previously 8.6 × 10⁻¹¹ NA48/2)

Dark photon searches

Hidden sector

From cosmological observations, there must be a dark sector

- Not observed so far => interacting with SM only through a gaugemediator
- > Different possibilities: neutrino (HNL), axial (ALP), scalar, vector.

[Phys. Lett. B166 (1986) 196]

Dark photon A'

[PRD 80, 095024 (2009)]

- > Simplest model with one extra U(1) gauge symmetry
- \succ Kinetic mixing between QED and new U(1)

$$\mathcal{L}_{\rm mix} = -\frac{\varepsilon}{2} F_{\mu\nu}^{\rm QED} F_{\rm dark}^{\mu\nu}$$

Analysis principle

- **□** Select sample of tagged π^0 from $K^+ \to \pi^+ \pi^0$ decays, with exactly one γ detected
- **D** Peak search in the $m_{\rm miss}^2 = \left(\mathbf{P}_{\rm K} \mathbf{P}_{\pi} \mathbf{P}_{\gamma} \right)^2$ distribution
 - ➢ Sliding $m^2_{\rm miss}$ window of width $\pm 1\sigma_{m^2_{\rm miss}}$ to count $n_{\rm sig}$ for each $m_{A'}$ hypothesis.
 - \blacktriangleright Use $K^+ \rightarrow \pi^+ \pi^0$ as normalization $m_{\rm miss}^2$ distribution for Data and simulated signal Events per tagged $\,\pi^{0}$ / (4 imes 10⁻⁴ GeV²/ c^4 Data, $\pi^0 \rightarrow \gamma \gamma$ MC, $\pi^0 \rightarrow \gamma A'$, $M_{A'} = 60 \text{MeV}/c^2$ MC, $\pi^0 \rightarrow \gamma A'$, $M_{A'} = 90 \text{MeV}/c^2$ MC, $\pi^0 \rightarrow \gamma A'$, $M_{A'} = 120 \text{MeV}/c^2$ 10⁻⁶ 10^{_7} <u>10</u>_0.005 0.005 0.01 0.015 0.02 $M_{\rm miss}^2$ [GeV²/ c^4]

Background evaluation

- **☐** Most abundant background from $\pi^0 \rightarrow \gamma \gamma$ with one γ not detected
- **Data-driven** approach
 - Select sample with one γ converting into e^+e^- upstream (bckg sample)
 - Scale the bckg sample to the signal sample in a side-band not overlapping with the search region

Dark photon result

- CLs statistical treatment on a subset of the 2016 data sample (\sim 1% of the total 2016-2018 data sample)
- No statistically significant excess is detected
 - Upper limits at 90% CL compatible with fluctuations from the backgroundonly hypothesis
 - \blacktriangleright Improvement on previous limits over the mass range $60 110 \text{ MeV}/c^2$

Conclusions

One $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ event observed in Region 2 in 2016

- > $BR(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10} @ 95\% CL$
- Published in [Phys. Lett. B 791 (2019) 156-166]

Analysis of 2017 data is ongoing.

Expect about a factor 10 of improvement (from statistics)

Searches for LNV processes

- \succ B(K⁺ → π⁻e⁺e⁺) < 2.2 × 10⁻¹⁰
- \succ B(K⁺ → π⁻μ⁺μ⁺) < 4.2 × 10⁻¹¹

Dark photon searches

- No statistically significant excess is detected
- Upper limits at 90% CL compatible with fluctuations from the backgroundonly hypothesis
- > Improvement on previous limits over the mass range $60 110 \text{ MeV}/c^2$

Huge amount of data still to analyse. Stay tuned for more results!!!

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ in New Physics Scenarios

Custodial Randall-Sundrum

[JHEP 0903 (2009) 108]

> MSSM analyses [JHEP 0608 (2006) 064]

[Int.J.Mod.Phys A29 (2014) no.27, 1450162]

Simplified Z, Z' models

[JHEP 1511 (2015) 166]

Littlest Higgs with T-parity

[Eur.Phys.J. C76 (2016) 182]

LFU violation models

[Eur.Phys.J. C77 (2017) no.9 618]

Combine measurement of with other channels

NA62 Analysis Strategy

Signal and background regions are kept blind throughout the analysis

Decay backgrounds

 $\pi^{+}\pi^{-}e^{+}\nu$ 4.2 × 10⁻⁵

Other backgrounds

Beam-gas interactions

Upstream interactions

BR

63.5%

20.7%

5.6%

Decay mode

 $\mu^+\nu(\gamma)$

 $\pi^+\pi^0(\gamma)$

 $\pi^{+}\pi^{+}\pi^{-}$

PID and high efficiency Veto systems

Muon suppression $> 10^7$

 π^0 suppression > 10^7

Particle ID (Cherenkov + calorimeters) > P

Photon veto

Time resolution $\sim O(100 \text{ ps})$ Matching of upstream-downstream activity

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ Background validation

Background $K^+ \rightarrow \pi^+ \pi^0(\gamma)$

Data driven background estimation

$$N_{\pi\pi}^{CR1,2} = 1.46 \pm 0.16_{\text{stat}} \pm 0.06_{\text{syst}}$$

$$N_{\pi\pi}^{R1,2} = 0.064 \pm 0.007_{\text{stat}} \pm 0.006_{\text{syst}}$$

Background $K^+ \rightarrow \mu^+ \nu(\gamma)$

Data driven background estimation

$$N_{\mu\nu}^{R1,2} = 0.020 \pm 0.003_{\text{stat}} \pm 0.006_{\text{syst}}$$

Background K⁺

- **2017** update
- Selected using MUV3 tagging

Background $K^+ \rightarrow \pi^+ \pi^- e^+ \nu$

MC estimation

- $\sim N_{\pi\pi e\nu}^{R1,2} = 0.013^{+0.017}_{-0.012}|_{\text{stat}} \pm 0.009_{\text{syst}}$

Upstream background

- Accidental particles from the beam line
- Pions from interactions with beam spectrometer material
- □ Kaon-pion matching and geometrical cuts effective
 - **Data-driven estimation** Achromat $\times 10^3$ [um] Y Addition of a copper block 14 in the beam line in 2017 12 Installation of a new final 10 200collimator in 2018 8 0 6 -200 CHANTI acceptance 4 Collimator 2 -600-600-200 0200 600 X [mm]

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Single Event Sensitivity

Signal acceptance: 4%

Normalization

- \succ $K^+ \rightarrow \pi^+ \pi^0$ on control trigger
- Acceptance: 10%
- Number of kaon decays in the fiducial volume: $N_K = 1.21(4) \times 10^{11}$

Uncertainties

Source	$\delta SES\left(10^{-10} ight)$		
Random Veto	± 0.09		
N_K	± 0.05		
Trigger efficiency	± 0.04		
Definition of $\pi^+\pi^0$ region	± 0.10		
Momentum spectrum	± 0.01		
Simulation of π^+ interactions	± 0.03		
Extra activity	± 0.02		
GTK Pileup simulation	± 0.02		
Total	± 0.24		
$SES = (3.15 \pm 0.01_{\text{stat}} \pm 0.24_{\text{syst}}) \cdot 10^{-10}$			

RICH ring of π^+ of PNN candidate

LFV/LNV without RICH ID

 $K^+ \rightarrow \pi^+ e^+ e^-$

- □ First observation of $K^+ \rightarrow \pi^+ e^+ e^-$ with $m_{ee} < 140 \text{ MeV}/c^2$ without background
- igcup Also first observation of $\pi^0 o e^+ e^-$

