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Outlines

 Dilution kickers 

 Failure scenarios:

 Original assumptions

 New findings

 Mitigations

 Conclusions

Budget and manpower estimates are still being 

evaluated and are not included in this talk (info for 

next PSM on November 22nd) 
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MKB Dilution Kickers
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MKD

MKB 
(4H – 6V)
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TDE: Beam dump

MKB: dilution kickers

MKBH.A/B MKBV.E/FMKBH.C/D MKBV.A/B MKBV.C/D



logo

area

To Keep in Mind

 The voltage in the MKBH generators is higher than in the MKBV
generators (4 against 6)

 The voltage in the magnet is slightly higher for the MKBV than 
MKBH (larger MKBV pole gap for aperture reasons)  

 The likelihood of an erratic is proportional to the voltage in the 
generator (i.e.  to the beam energy)

 The likelihood of a flashover is proportional to the voltage in the 
magnet (i.e.  to the beam energy)

 The upgrade to reduce the voltage in the generator will not 
reduce the voltage in the magnet (same voltage for operation at 
6.5 TeV and higher for 7-7.5 TeV)  higher risk of flashover at 
higher energy
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MKB Dilution Kickers - Failures

Original assumptions

 Horizontal plane more 

critical since 4 kickers only

 Erratic firing of one MKB: 

risk of phase opposition 

50% dilution left in H plane

Courtesy of C. Wiesner
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MKB Dilution Kickers - Failures

Courtesy of C. Wiesner

Original worst failure case: 

two missing horizontal  

dilution kickers

Original assumptions

 Horizontal plane more 

critical since 4 kickers only

 Erratic firing of one MKB: 

risk of phase opposition 

50% dilution left in H plane

 Flashover simultaneously 

affecting two MKBs sharing 

the same vacuum tank 

50% dilution left in H plane



logo

area

New Failure Case: EM Coupling

 New failure case: parasitic EM coupling between MKB generators

 Possible losing more than 50% of the horizontal dilution (in case of antiphase)

Courtesy of C. Wiesner

For t∞

αmax  75%

(loss of 1 MKBH)

For t∞

αmax  50%

(loss of 2 MKBH)

For t∞

αmax  25%

(loss of 3 MKBH)

For t∞

αmax  0%

(loss of 4 MKBH)
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Energy Deposition Studies

Courtesy of M.I. Frankl

• BCMS beams more critical for upstream window in terms of peak energy 

density

• HL-LHC standard more critical for core and downstream window since shower 

development dominant effect  

Peak Temperatures at existing TDE and windows: HL-STD and BCMS 

Beams
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Energy Deposition and Thermo-mechanical stress Studies
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TiGr2 Downstream WindowCfC + 316L Upstream Window

• The expected stress levels in the windows are too high for a long-term and 

reliable operation  upgrade of windows required 

• Thermal characterization of Sigraflex core only up to 1900 °C                                                                  

and mechanical characterization challenging. Ongoing studies!

Courtesy of T. Polzin
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Mitigations Against Erratics

Courtesy of C. Wiesner

 Reduce MKBH generator voltage by increasing capacitance

 In case of erratic all the remaining MKBs are re-triggered  synchronous 

beam dump request* 

 No more risk of anti-phase in case of erratic

 Different sweep pattern depending on MKD-MKB delay
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Mitigations Against Erratics
 Reduce MKBH generator voltage by increasing capacitance

 In case of erratic all the remaining MKBs are re-triggered  synchronous 

beam dump request* 

 No more risk of anti-phase in case of erratic

 Different sweep pattern depending on MKD-MKB delay

* Details in 163 rd MPP, 27.04.2018 (https://indico.cern.ch/event/724736/) 

reaction 

time < 6 us

~89 us

2/4 MKBH 

(165.5%)

Highest Edep

US window

Highest Edep

dump core

Highest Edep

DS window

Courtesy of C. Wiesner
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Mitigations Against Erratics

Add two MKBHs (reduce sensitivity to 
failure)

 Approach 1: keep present 
dilution reduces voltage (risk 
of erratic) for each MKBH 
generator to 
Vnew ≈ 67%·V0 ≈ 18 kV

 Approach 2: increase total 
dilution (less voltage reduction)
reduce peak energy-deposition 
in TDE during nominal operation 
and in case of failure

Reduce failure sensitivity (from 2/4 
missing to 2/6 missing)

MKBH kick scaled by 120% MKBH kick scaled by 150%

Courtesy of C. Wiesner and M.I. Frankl



logo

area

Other Dump Issues

 Oxidation

 Vibrations

Mass Loss

Temperature Time Atmosphere Sigrafine Sigraflex Comment

2500°C 1s 15ml Air 0.03% 0.11% Mean of 3 samples in 5 experiments

2500°C 10s 150ml Air 0.66% 0.99% Mean of 3 samples in 5 experiments

2500°C 100s 1200ml Air 5.80% 16%

Mean of 3 samples in 2/3 

experiments;

Standard deviation: 7.4%/16.5%

1200°C 1000s Air 3.96% 25.50% Mean of 6 samples in 1 experiment 

1200°C 100s Air 0.49% 2.50% Mean of 5 samples in 1 experiment

1500°C; cool 

down in air to 

150°C

10s – 20s Air 1.6% 2.5%
Mean of 2 experiments with 1 

sample each

SEM picture of cross section of a Sigraflex sheet

1000s at 1200°C

Argon Air

• HL-LHC beams worsening the 

present situation

• Small benefit for nominal 

operation with additional H dilution 

(lower temperature rise in dump 

core)

Courtesy of T. Polzin
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MKBV Flash-over on July 14th 2018

 B2, 2556 bunches at 6.5 TeV

 First flash-over with beam, previous event during lab test in 2008

 Programmed dump, 37 μs after the start of the dump a flash-over

occurred in magnet MKBV.C, 10 us later propagated to MKBV.D (both

magnets in same tank)

Current in generators

First flash-over

Second flash-over
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Nominal pattern

Nominal dump

2018-07-12, 13h52

Simulated pattern using waveform

from 2016-07-22, 17h01 (B2).

Center position fitted and vertical size scaled by 1.04

Courtesy of C. Wiesner
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MKBV Flash-over

MKBV flash-over

2018-07-14, 03h00

Simulated pattern using waveform

from 2016-07-22, 17h01 (B2).

Center position fitted and vertical size scaled by 1.04

Courtesy of C. Wiesner
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Courtesy of C. Wiesner

MKBV Flash-over

t1

t2

Simulated pattern using waveform

from 2016-07-22, 17h01 (B2).

Center position fitted and vertical size scaled by 1.04
MKBV flash-over

2018-07-14, 03h00

Lost ~3 MKBV at the end of 

the sweep
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MKB Flash-over: What Happened?
HV Generator 

Current
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MKB Flash-over: What Happened?
HV Generator 

Current

1st flash-over after 37 μs

0 Current in the magnet 

(max voltage between 

busbars)

Simulation V. Senaj
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MKB Flash-over: What Happened?
HV Generator 

Current

Simulation V. Senaj

Simulation V. Senaj

Flash-over propagation 

through plasma

1st flash-over after 37 μs

0 Current in the magnet 

(max voltage between 

busbars)

2nd flash-over 10 μs later

Some current in the magnet

Antiphase with other 

kickers  loss of 3 MKBVs

Simulation V. Senaj
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Vacuum vs intensity
 Vacuum baseline:

 2016: 1e-7 mbar

 2017: 3e-8 mbar

 2018: 3e-8 mbar

Beam induced vacuum spikes: 

0.1 – 1 e-7 mbar

• Most likely degraded vacuum effect and not 

cause of flash-over 

• Beam induced outgassing – observed up to 

1e-7 mbar pressure rises while HI dumps, 

several orders of magnitude below expected 

problem 

• Vacuum pumps flashover unlikely – wouldn’t 

reach this volume in such short time

Courtesy of E. Carlier
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Effect of Flash-Over in MKBH

Simulated voltage and current in MKBs

PSpice simulation: V. Senaj

Voltage 

maximum in 

MKBH: 

-6.6 kV at 22 us

Voltage maximum 

in MKBH: +9.2kV 

at 52 us

Simulations performed assuming:

Flashover affects both magnets in the same tank (no propagation to adjacent ones)

First flashover occurring around maximum voltage (+/- 20%) in the magnet

Delay between first and second flashover: 10 us 

Current in magnet coil constant after flashover (slow decay of ~8% over 50 us)

Courtesy of C. Wiesner
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Effect of Flash-Over in MKBH

Simulated voltage and current in MKBs for 6.5 TeV

PSpice simulation: V. Senaj

Voltage 

maximum in 

MKBH: 

-6.6 kV at 22 us

Voltage maximum 

in MKBH: +9.2kV 

at 52 us

Courtesy of C. Wiesner
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Effect of Flash-Over in MKBH

PSpice simulation: V. Senaj

Voltage 

maximum in 

MKBH: 

-6.6 kV at 22 us

Voltage maximum 

in MKBH: +9.2kV 

at 52 us

Simulated voltage and current in MKBs for 6.5 TeV

Courtesy of C. Wiesner
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Effect of Flash-Over in MKBH

PSpice simulation: V. Senaj

Voltage 

maximum in 

MKBH: 

-6.6 kV at 22 us

Voltage maximum 

in MKBH: +9.2kV 

at 52 us

Simulated voltage and current in MKBs for 6.5 TeV

Courtesy of C. Wiesner
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Effect of Flash-Over in MKBH

PSpice simulation: V. Senaj

Voltage 

maximum in 

MKBH: 

-6.6 kV at 22 us

Voltage maximum 

in MKBH: +9.2kV 

at 52 us

Simulated voltage and current in MKBs for 6.5 TeV

Courtesy of C. Wiesner
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Effect of Flash-Over in MKBH

PSpice simulation: V. Senaj

Voltage 

maximum in 

MKBH: 

-6.6 kV at 22 us

Voltage maximum 

in MKBH: +9.2kV 

at 52 us

Simulated voltage and current in MKBs for 6.5 TeV

Courtesy of C. Wiesner
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Effect of Flash-Over in MKBH

PSpice simulation: V. Senaj

Voltage 

maximum in 

MKBH: 

-6.6 kV at 22 us

Voltage maximum 

in MKBH: +9.2kV 

at 52 us

Simulated voltage and current in MKBs for 6.5 TeV

Courtesy of C. Wiesner
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New Proposed Baseline

1. Addition of two MKBH per beam by LS3

 Only fully reliable solution to reduce risk 

(lower voltage) and sensitivity to any 

possible failure of MKBH

 Possibility of increasing dilution at the 

dump and reduce energy density and thus 

temperature increase during nominal 

operation (thermo-mechanical studies 

needed)

2. Improve insulation of the HV busbars (if 

present understanding of flashover origin 

confirmed during visual inspection)

Expected impact on intensity reach after LS2 

 effects and possible mitigations are being 

evaluated 
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Updated Worst cases – MKBH flashover

Estimated density increase compared to nominal pattern (BCMS)

Preliminary

• FLUKA and thermo-mechanical studies required.

• To be checked for different filling patterns and 

different flashover characteristics

Dilution patterns: C. Wiesner

Density estimations: L. Richtmann

US Win TDE Flashover

probabilty

Worst case flashover time 

[16 us… 28 us]

4/4 MKBH 100% 100%

2/4 MKBH 191% 173%

Flashover –

4  MKBH

209% 192% As today 16 us

Flashover –

6 MKBH at 

67% voltage

164% 170% Significantly

reduced

28 us

Flashover –

6 MKBH at 

80% voltage

118% 153% Reduced 19 us (US win) /

28 us (TDE)
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Conclusions

 6 Vertical and 4 horizontal kickers are used to dilute the beam and 
minimize the local energy density at the dump

 Originally, two worst failure scenarios were considered (worst failure in 
H plane since only 4 kickers installed):
 Erratic of 1 kicker plus perfect antiphase  2 missing MKBHs

 Simultaneous flash-over in 2 magnets sharing vacuum tank  2 missing 
MKBHs 

 New failure scenarios were discovered in operation:
 EM coupling  multiple erratic plus antiphase  more than 2 missing MKBHs

 Delayed flashover in magnets sharing vacuum tank  up to 3 missing MKBHs

 Strong impact on dump windows (and core?) survival in case of failure 
when operating with high intensity beams

 Planned mitigations for erratic:
 Reduce voltage in MKBH generators  reduce risk of erratic

 MKB re-triggering  avoid anti-phase

 Possible option of adding two MKBHs (with same or increased dilution) to 
reduce voltage and sensitivity to failures was being studied

 New proposed baseline (new failure case after 2018 flash-over event):
 Add two MKBHs (with same or increased dilution)  reduce voltage and 

sensitivity to failures 

 Improve isolation of HV busbars  reduce risk of flash-over

Present 

baseline
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Thank you for your attention!
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Missing MKBs

Number of active MKBV
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Courtesy of C. Wiesner


