

ECR related to 120A/200 A HL-LHC circuits

A. Ballarino

A. Ballarino, F.M.Rodriguez, S. Yammine, F. Menendez Camara

TCC Meeting, 20/09/2018

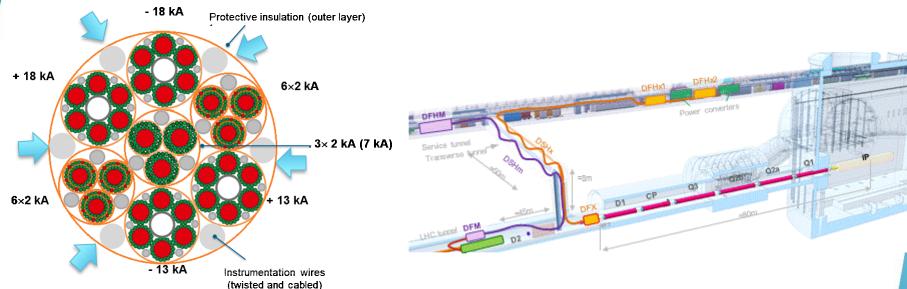
With contributions from:

WP3 (Magnets): E. Todesco, D. Ramos, V. Parma, H. Prin, L. Bottura

WP6b (Warm powering): M. Martino

WP7 (Machine Protection):D. Wollmann

WP 9 (Cryogenics): S. Claudet


WP15 (Integration): P. Fessia,

WP17 (Infrastructure): J. C. Guillaume

The proposal

120 A Leads (16) + 200 A Leads (2)

MgB₂ cable assembly

120 A Leads removed from SC Link and locally integrated in the magnets' cryostat

This is the solution adopted for LHC

The advantages for WP6a

- Elimination of the about 100 m long electrically insulated MgB2 cables, rated for DC currents of 200 A or 120 A, housed inside the superconducting link (eighteen cables per Triplet);
- **Simplification** of the **cabling process** related to the assembly of the 200 A/120 A MgB2 cables in the final MgB₂ cable assembly;
- Elimination of the 200 A/120 A gas cooled High Temperature Superconducting (HTS)
 current leads located in the replaced by conduction-cooled current leads;
- Elimination of the control valves and warm recovery lines associated with gas-cooled current leads;
- Elimination of the protection equipment needed for the superconducting part of the circuit, i.e. for the MgB₂ cables and for the HTS part of the leads (each requiring dedicated protection with different voltage thresholds);
- Reduction of the number of the electrical splices in the Cold Powering System, i.e.
 elimination per Triplet- of eighteen HTS to MgB₂ splices in the DFH cryostat and eighteen MgB2 to Nb-Ti splices in the DFX cryostat;
- Simplification of DFH cryostat by reduction of number of HTS cables routed out of it and of number of splices it shall host.
- Simplification of the plug in the DFX cryostat.

The simplifications listed above favour reliability of the circuits during machine operation

Impact on WP3 and WP9

- **WP3**. Integration feasible. Integration of feedthroughs feasible in the CP cryostat (extra cost of ~ 95 kCHF). Heat sink will be at 60 K-80 K. In addition, savings because of reduced work for interconnections (~ 40 kCHF). Saving also because availability of local leads in CP cryostat enables a) reduced number of cool-downs (factor 3) for test of magnets in the SM-18 and b) reduction of related connection work, which is a significant percentage of the test preparation (this saving has not been quantified in kCHF).
- WP9. Integration feasible. Total saving (suppression of He valves and warm recovery lines) ~ 60 kCHF. Estimated also for information impact on operational cost during 10 years of operation (20 kCHF per point, for a total of 80 kCHF). The estimation has been done by considering the heat load at 1.9 K of the conduction-cooled leads -10 mW/A (thermalization at 60 K- 80 K).

Impact on WP6b

- **WP6b**. Integration feasible. Two possibilities studied:
 - Case A. Warm powering remains in the URs. No extracost.
 - Case B. Warm powering moved to UL14, UL16, USC55, UL557. Radiation hard power converters 200 A to be made (including spare units). Limited access not considered of big impact. Extra cost of 75 kCHF (including adaptation of control infrastructure).

Impact on WP7

- WP7. Integration feasible
- Case A: no changes. About 25 kCHF cost reduction (reduced number of quench detection systems).
- Case B: need of moving the MQSXF quench detection and energy extraction system (space found). Additional signal cables from power converters. No cost reduction.

Impact on WP 17

- WP17. Integration feasible
- Case A: DC cables power dissipation in the vertical shaft to be verified. Cross section of cables to be increased
- Case B: Partial re-use of existing infrastructure and cable trays.

Impact on WP 15

- WP 15. Integration feasible
- CASE A: Installation of Cu cables in // with the rest of the cabling campaign. Extra element in the plan
- CASE B: Provision of 100 kCHF (25 kCHF per IP) for modification of existing infrastructure. To be transferred to WP15 only in case of need

Cost evaluation

	CASE A	CASE B			
WP3	- 40 kCHF + 95 kCHF		Plus saving in magnet test (not quantified)		
WP6a	- 450 kCHF				
WP6b	No extra cost	+ 75 KCHF			
WP7	- 25 kCHF	No extra cost			
WP9	- 60 kCHF		Operational cost + 80 kCHF		
WP15	Minor impact	+ 100 kCHF	Provision in case of need		
WP17	+ 330 kCHF	+ 62 kCHF			

Total saving CASE A: 575 kCHF

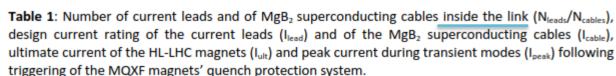
CASE B: 550 kCHF

Total extra-cost CASE A: 425 kCHF

CASE B: 232 kCHF

Net saving CASE A: 150 kCHF

CASE B: 318 kCHF


Conclusions

- Local powering feasible
- Impact on different WPs evaluated
- In view of the feasibility and advantages for:
 - the Cold Powering System system
 - the related cryogenic/electrical/protection systems
 - the testing of the CP magnets
 - the costs
 - ... the MCF recommended (meeting on 18/09/2018) to go ahead with ECR to TCC for approval
- Finally: the ECR has been written and is ready for being

Solution for Q1 Trim (EDMS 1821907)

	Magnet	Cold Powering				
	I _{ult} (kA)	I _{peak} (kA)	I _{lead} (kA)	I _{cable} (kA)	N _{leads} /N _{cables}	
MQXF	17.82	-	18	18	2	
Trim Q1	2	2.4	2*	7	1	
Q2a/Q2b	Protec.	5.6	2*	7	1	
Trim Q3	2	6.8	2*	7	1	
MCBXFB	1.73	-	2	2	2+2	
MCBXFB	1.59	-	2	2	2+2	
MCBXFA	1.73	-	2	2	2	
MCBXFA	1.59	-	2	2	2	
MQSXF	0.2	-	0.2	0.2	2	
MCSXF/MCSSXF	0.12	-	0.12	0.12	2+2	
MCOXF/MCOSXF	0.12	-	0.12	0.12	2+2	
MCDXF/MCDSXF	0.12	-	0.12	0.12	2+2	
MCTXF/MCTSXF	0.12	-	0.12	0.12	2+2	
D1	12.96	-	18	18	2	

k-modulation Trim on Q1a: part of WP3. Local powering - via leads of CLIQ type.

