Stability in Gauge Mediation

work in progress, done in coll. with Emilian Dudas and Stephane Lavignac

Stability in Gauge Mediation

work in progress, done in coll. with Emilian Dudas and Stephane Lavignac

A few words on gauge mediation

A few words on gauge mediation

$$X = X_0 + \theta^2 F_X$$

MSSM

A few words on gauge mediation

MSSM

+ messengers $\phi \hat{\phi}$

A few words on gauge mediation

MSSM

+ messengers $\phi \tilde{\phi}$

$$(\lambda X + M)\phi\tilde{\phi}$$

A few words on gauge mediation

MSSM

+ messengers $\phi \tilde{\phi}$

$$(\lambda X + M)\phi\tilde{\phi}$$

charged under

$$SU(3) \times SU(2) \times U(1)$$

A few words on gauge mediation

MSSM

+ messengers $\phi \tilde{\phi}$

$$(\lambda X + M)\phi\tilde{\phi}$$

$$M_a(\mu) = \frac{\alpha_a(\mu)}{4\pi} N_m \sum_i 2T_a(R_i) \frac{F}{M}$$

charged under

$$SU(3) \times SU(2) \times U(1)$$

J. Parmentier

$$W_{OR} = X_i f_i(\psi_k) + g(\psi_k)$$

- S. Ray hep-th/0708.2200
- Z. Komargodski, D. Shih hep-th/0902.0030

$$W_{OR} = X_i f_i(\psi_k) + g(\psi_k)$$

- S. Ray hep-th/0708.2200
- Z. Komargodski, D. Shih hep-th/0902.0030

$$V_{SM} = V_{SM} + \frac{|\sum \lambda_i^* F_i|^2}{\sum |\lambda_i|^2}$$

$$V_{SM} = V_{SM}$$

$$W_{OR} = X_i f_i(\psi_k) + g(\psi_k)$$

- S. Ray hep-th/0708.2200
- Z. Komargodski, D. Shih hep-th/0902.0030

$$V_{SM} = V_{SM} + \frac{|\sum \lambda_i^* F_i|^2}{\sum |\lambda_i|^2}$$

$$V_{SM} = V_{SM}$$

Classical: Instability

$$W_{OR} = X_i f_i(\psi_k) + g(\psi_k)$$

- S. Ray hep-th/0708.2200
- Z. Komargodski, D. Shih hep-th/0902.0030

$$V_{SM} = V_{SM} + \frac{|\sum \lambda_i^* F_i|^2}{\sum |\lambda_i|^2}$$

$$V_{SM} = V_{SM}$$

Classical: Instability

Quantum corrections: metastability?

$$W_{OR} = X_i f_i(\psi_k) + g(\psi_k)$$

- S. Ray hep-th/0708.2200
- Z. Komargodski, D. Shih hep-th/0902.0030

$$W_{OR} = X_i f_i(\psi_k) + g(\psi_k)$$
 i = I.. N, k = I..M N>M

$$W_{OR} = X_i f_i(\psi_k) + g(\psi_k)$$
 i = 1..N, k = 1..M N>M

$$F_{X_i} = f_i(\psi_k) = 0$$
 N equations, M variables

$$W_{OR} = X_i f_i(\psi_k) + g(\psi_k)$$
 i = I.. N, k = I..M N>M

$$F_{X_i} = f_i(\psi_k) = 0$$
 N equations, M variables \longrightarrow SUSY

$$F_{\psi_k} = X_i \frac{\partial f_i}{\partial \psi_k} + \frac{\partial g}{\partial \psi_k} = 0$$
 M equations, N variables

N-M flat directions

Tree level:

$$W_{OR} = X_i f_i(\psi_k) + g(\psi_k)$$
 i = I..N, k = I..M N>M

$$F_{X_i} = f_i(\psi_k) = 0$$
 N equations, M variables

Tree level: $\psi_k, k = 1..M$ fixed,

$$W_{OR} = X_i f_i(\psi_k) + g(\psi_k)$$
 i = I..N, k = I..M N>M

$$F_{X_i} = f_i(\psi_k) = 0$$
 N equations, M variables

$$F_{\psi_k} = X_i \frac{\partial f_i}{\partial \psi_k} + \frac{\partial g}{\partial \psi_k} = 0$$
 M equations, N variables

→ N-M flat directions

Tree level :
$$\psi_k, k=1..M$$
 fixed, $X_i, i=1..M$ fixed, $X_i, i=M+1..N$ flat directions

$$V = V$$
 (

$$V = V (\{\psi_k, k = 1..M\},$$

$$V = V (\{\psi_k, k = 1..M\}, \{X_i, i = 1..M\})$$

$$V = V (\{\psi_k, k = 1..M\}, \{X_i, i = 1..M\})$$
 fixed at tree level

$$V = V \left(\{ \psi_k, k = 1..M \}, \{ X_i, i = 1..M \} \ \{ X_i, i = M + 1..N \} \right)$$
 fixed at tree level

$$V = V \left(\{ \psi_k, k = 1..M \}, \{ X_i, i = 1..M \} \right. \left\{ X_i, i = M + 1..N \} \right)$$
 fixed at tree level quantum corrections

$$F_{X_i} = f_i(\psi_k)$$

$$V = V \left(\{ \psi_k, k = 1..M \}, \{ X_i, i = 1..M \} \right. \left\{ X_i, i = M + 1..N \} \right)$$
 fixed at tree level quantum corrections

$$F_{X_i} = f_i(\psi_k)$$

$$F_{\psi_k} = X_i \frac{\partial f_i}{\partial \psi_k} + \frac{\partial g}{\partial \psi_k}$$

$$V = V \left(\{ \psi_k, k = 1..M \}, \{ X_i, i = 1..M \} \right. \left\{ X_i, i = M + 1..N \} \right)$$
 fixed at tree level quantum corrections

$$F_{X_i} = f_i(\psi_k)$$

$$F_{\psi_k} = \sum_{1}^{M} X_i \frac{\partial f_i}{\partial \psi_k} + \sum_{M+1}^{N} X_i \frac{\partial f_i}{\partial \psi_k} + \frac{\partial g}{\partial \psi_k}$$

$$F_{X_i} = f_i(\psi_k)$$

$$F_{\psi_k} = \sum_{1}^{M} X_i \frac{\partial f_i}{\partial \psi_k} + \left(\sum_{M+1}^{N} X_i \frac{\partial f_i}{\partial \psi_k}\right) + \frac{\partial g}{\partial \psi_k}$$

$$\textbf{V} = \textbf{V} \ \big(\{ \psi_k, k = 1..M \}, \{ X_i, i = 1..M \} \ \{ X_i, i = M+1..N \} \, \big)$$
 fixed at tree level quantum corrections

$$\begin{split} F_{X_i} &= f_i(\psi_k) \\ F_{\psi_k} &= \sum_{1}^{M} X_i \frac{\partial f_i}{\partial \psi_k} + \sum_{M+1}^{N} X_i \frac{\partial f_i}{\partial \psi_k} + \frac{\partial g}{\partial \psi_k} \\ F_{\psi_k} &= \sum_{1}^{M} X_i \frac{\partial f_i}{\partial \psi_k} + (Y_k) + \frac{\partial g}{\partial \psi_k} \quad Y_k = \sum_{M+1}^{N} X_i \frac{\partial f_i}{\partial \psi_k} \quad k = 1..M \\ \mathbf{V} &= \mathbf{V} \left(\{ \psi_k, k = 1..M \}, \{ X_i, i = 1..M \}, \{ Y_k, k = 1..M \} \right) \\ & \text{fixed at tree level} \quad \text{fixed by quantum corrections} \end{split}$$

M constraints on the N-M flat directions

M constraints on the N-M flat directions

If N > 2M, some flat directions are left

J. Parmentier

$$W_{OR} = X_i f_i(\psi_k) + g(\psi_k)$$

$$i = \text{I..N, k} = \text{I..M}$$

if N> 2M,
quantum corrections
 can't lift all
 flat directions

condition for (meta)stability:

$$N \leq 2M$$

Can we avoid mestability?

$$W = X_i(f_i + m_i^a \psi_a + h_i^{a,b} \psi_a \psi_b) + (\lambda_i X^i + M)\phi \tilde{\phi}$$

X is neutral

 $\phi \tilde{\phi}$ is gauge invariant

flat direction

$$\longrightarrow$$
 D = 0

Patterns of Symmetry Breaking in Supersymmetric Gauge Theories

Phys.Lett.B115:375,1982

Quantum corrections and metastability

Quantum corrections and metastability

$$V_{SM} = V_{SM} + \frac{|\sum \lambda_i^* F_i|^2}{\sum |\lambda_i|^2}$$

$$V_{SM} = V_{SM}$$

Classical: Instability

Quantum corrections and metastability

$$V_{SM} = V_{SM} + \frac{|\sum \lambda_i^* F_i|^2}{\sum |\lambda_i|^2}$$

$$V_{SM} = V_{SM}$$

Classical: Instability

Quantum corrections: metastability

Quantum corrections and stability

$$V_{SM} = V_{SM} + \frac{|\sum \lambda_i^* F_i|^2}{\sum |\lambda_i|^2}$$

$$V_{SM} = V_{SM}$$

Classical: Instability

Quantum corrections: stability?

Quantum corrections and stability

$$V_{SM} = V_{SM} + \frac{|\sum \lambda_i^* F_i|^2}{\sum |\lambda_i|^2}$$

$$V_{SM} = V_{SM}$$

Classical: Instability

Quantum corrections: stability?

fine-tuning on classical $\sum \lambda_i^* F_i$

~ quantum corrections

Quantum corrections in O'R model

$$W = X_{i}(f_{i} + m_{i}^{a}\psi_{a} + h_{i}^{a,b}\psi_{a}\psi_{b}) + (\lambda_{i}X^{i} + M)\phi\tilde{\phi}$$

$$\Lambda_{SM} - \Lambda_{SM} = \underbrace{\sum_{i} \lambda_{i}^{*} f_{i}(\psi)|^{2}}_{\sum_{j} |\lambda_{j}|^{2}} + \frac{1}{128\pi^{2}} \underbrace{\sum_{i} \lambda_{i}^{*} f_{i}(\psi)|^{2}}_{i} (2 - \underbrace{\sum_{a,b} |\sum_{j} h_{a,b}^{j,*} \lambda_{j}|^{2}}_{(\sum_{i} |\lambda_{i}|^{2})^{2}}) + \frac{1}{128\pi^{2}} \underbrace{\sum_{i} |\lambda_{i}|^{2}}_{\sum_{i} |\lambda_{i}|^{2}} \sum_{a,b} (\underbrace{\sum_{j} h_{a,b}^{j,*} f_{j}(\psi)}_{\sum_{k} h_{a,b}^{k,*} \lambda_{k}} \underbrace{\sum_{i} \lambda_{i}^{*} f_{i}(\psi)}_{i} + cc) + \frac{1}{64\pi^{2}} c \underbrace{\underbrace{\sum_{i} \lambda_{i}^{*} f_{i}(\psi)}_{\sum_{i} |\lambda_{i}|^{2}}}_{\sum_{i} |\lambda_{i}|^{2}}$$

GM and O'R -> instability, metastability, or stability

GM and O'R -> instability, metastability, or stability

instability

GM and O'R -> instability, metastability, or stability

instability

check that all flat directions are lifted by quantum corrections

GM and O'R -> instability, metastability, or stability

instability

metastability

check that all flat directions are lifted by quantum corrections

GM and O'R -> instability, metastability, or stability

instability

metastability

check that all flat directions are lifted by quantum corrections

have $F \ll M^2$ in order to have a huge lifetime for you vacuum

GM and O'R -> instability, metastability, or stability

instability

metastability

stability

check that all flat directions are lifted by quantum corrections

have $F \ll M^2$ in order to have a huge lifetime for you vacuum

GM and O'R -> instability, metastability, or stability

instability

metastability

stability

check that all flat directions are lifted by quantum corrections

have $F \ll M^2$ in order to have a huge lifetime for you vacuum

small fine tuning on $\sum \lambda_i^* f_i$ no hierarchical spectrum