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INTRODUCTION: COSMIC RAY ANOMALIES

PAMELA found rising positron fraction φ(e+)
φ(e+)+φ(e−) in energy range

10-100 GeV
FERMI and HESS saw excess (over expected background) in
e+ + e− flux in range 100-∼1000 GeV
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INTRODUCTION: SECLUDED DARK MATTER

Are these signals due to annihilating dark matter?

Challenge for model builders:
PAMELA saw no excess in antiproton flux
Annihilation cross section to explain cosmic ray signals is O(1000)
larger than cross section for right relic abundance

ARKANI-HAMED,FINKBEINER,SLATYER,WEINER: Ok if annihilation is
via boson with GeV mass
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GEV GAUGE BOSONS FROM WARPED SPACE

Where does the GeV scale come from?

SUSY (KATZ & SUNDRUM; MORISSEY, POLAND & ZUREK; ...)

We use: warped extra dimension (see also MCDONALD & MORISSEY)

Idea:
Localize U(1)′ gauge boson towards TeV brane
Break symmetry on Planck brane
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We use: warped extra dimension (see also MCDONALD & MORISSEY)

Idea:
Localize U(1)′ gauge boson towards TeV brane
Break symmetry on Planck brane

Planck brane TeV brane

ds2 = e−2ky (ηµνdxµdxν) + dy2
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We use: warped extra dimension (see also MCDONALD & MORISSEY)

Idea:
Localize U(1)′ gauge boson towards TeV brane
Break symmetry on Planck brane

localized massless mode
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Where does the GeV scale come from?

SUSY (KATZ & SUNDRUM; MORISSEY, POLAND & ZUREK; ...)

We use: warped extra dimension (see also MCDONALD & MORISSEY)

Idea:
Localize U(1)′ gauge boson towards TeV brane
Break symmetry on Planck brane

light mode

break U(1)′
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HOW TO LOCALIZE GAUGE BOSONS?

Consider following action for U(1)′ gauge field:∫
d5x
√
−g
[
−1

4
e−2φF ′MNF ′MN

]
Assume that φ has y-dependent vev: 〈φ〉(y) 6= 0. Massless KK mode
(for unbroken U(1)′) has constant profile, f (0)(y) = N(0). Its action
reads: (

(N(0))2
∫

dy e−2〈φ〉
)∫

d4x
[
−1

4
F ′(0)
µν F ′(0)µν

]
=⇒ effective profile of massless mode is

f̂ (0)(y) ∝ e−〈φ〉

By choosing different 〈φ〉(y), can be localized anywhere in 5th dim.
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LINEAR 〈φ〉-PROFILE

Easy to analyse: 〈φ〉 = a− bky

Defining ÂM ≡ e−〈φ〉A′M gives∫
d5x

[
−1

4
F̂ 2
µν −

1
2

e−2ky
(
∂y Âµ

)2
− 1

2
e−2ky (b2 − 2b) k2Â2

µ

−e−2ky bkÂ2
µ

(
δ(y)− δ(y − L)

)]
=⇒ ’standard‘ gauge field in RS but with bulk and boundary masses
=⇒ KK decomposition straightforward (as usual using Bessel functs.)
=⇒ As expected, there is massless mode with f̂ (0)(y) ∝ e−〈φ〉 ∝ e−bky
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LINEAR 〈φ〉-PROFILE

Now break U(1)′ by imposing Dirichlet boundary condition at UV brane
Mass spectrum then determined by

Jb
( mn

TeV

)
Yb
( mn

TeV

) =
Jb−1

(mn
k

)
Yb−1

(mn
k

)
Expanding for mn � TeV, one finds light mode with mass

m0 ≈
(

TeV
k

)(b−1)

TeV

=⇒ For k = 1018 GeV, b = 1.2 (i.e. the profile f̂ (0)(y) ∝ e1.2ky ) leads
to m0 ∼ GeV as desired
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MIXING WITH SM PHOTON AND DARK MATTER

Mixing with SM photon:

Kinetic mixing with SM photon can be induced e.g. at TeV brane
⇒ boundary condition which mixes SM photon and dark gauge
boson

Dark matter:

As dark matter, can consider fermion with TeV mass at TeV brane
Direct detection experiments: Kinetic mixing has to be suppressed
by ε . 10−6

Mixing can be larger if dark matter has small mass split
In warped extra dimension, such split can be obtained for bulk
fermion with Majorana mass at UV brane:

δm1 ∼
(

TeV
k

)2c′

TeV
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CONCLUSIONS

Dark matter explanation of the PAMELA/FERMI/HESS anomalies
possible if annihilation is via O(GeV) gauge boson
In warped extra dimension, GeV scale by localizing U(1)′ gauge
boson away from Planck brane and then breaking U(1)′ at Planck
brane
Gauge boson can be localized if kinetic term has form e−2〈φ〉F 2

MN
with y-dependent vev 〈φ〉
Case 〈φ〉 ∝ y easy to analyze. Checked also presence of light
mode for case 〈φ〉 ∝ e−ay . Showed how to obtain such vev.
Small mass split for dark matter can be obtained for bulk fermion
with Majorana mass term on UV brane (useful to avoid direct
detection constraints and to reconcile DAMA with other
experiments via inelastic dark matter scenario)
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