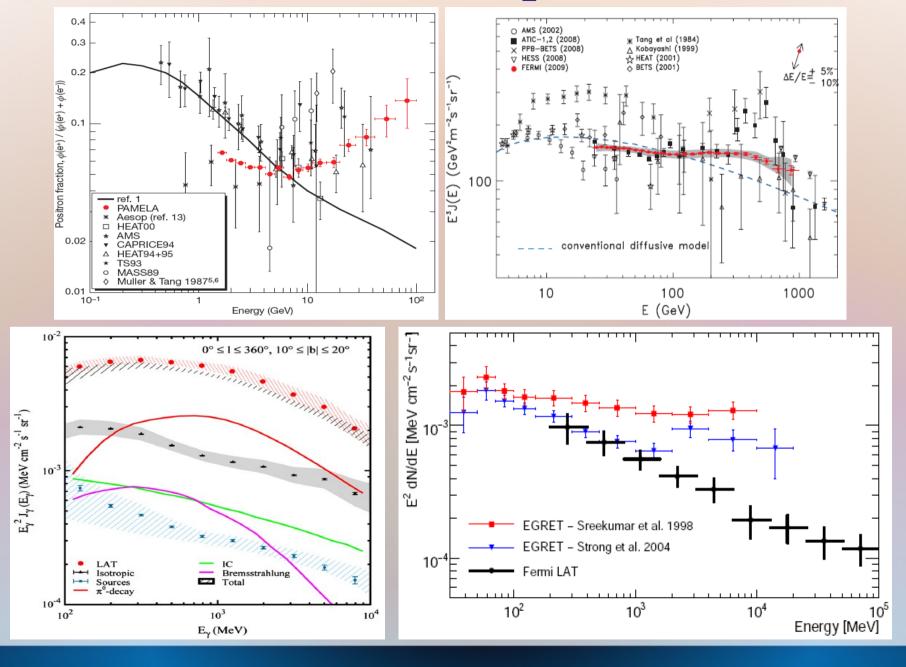
MSSM and Gravitino Dark Matter in view of PAMELA and Fermi-LAT

Yue Zhang
Abdus Salam ICTP, Trieste

Talk given at Planck 2010, CERN

Based on arXiv:1002.3631, in collaboration with Borut Bajc, T. Enkhbat, Dilip K.Ghosh and Goran Senjanovic


Outline

- Experiments and Motivations
- MSSM as a complete theory for
 - i. Gravitino Dark Matter,
 - ii. Neutrino Mass,
 - iii. consequences:
- The fate of slepton/squark masses.
- Sketch of possible LHC signatures, comment on flavor violations, baryogenesis.
- Conclusion and Outlook

Indirect Detections of Dark Matter

- Cosmic ray e⁺ Excess without p
 - ▶ PAMELA, ATIC, Fermi, HESS, HEAT, etc
- Possible astrophysical origins: pulsars, supernovae remnants, etc
- The existence of dark matter is well established by WMAP.
- It is extremely interesting if due to dark matter oringins.
- More correlated observations:
- Cosmic gamma-ray observations
 - γ from bremsstralung, prompt decay (π^0), inverse-Compton scattering, etc
- High-energy neutrino flux
 - dark matter annihilate/decay in the galaxy
 - from the core of the sun

Some Recent Experiments

The Nature of Dark Matter Candidates

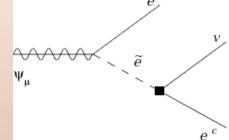
- Long-lived, weakly interacting, non-baryonic, cold.
- Leptophilic (dynamics or kinematics)
- Annihilating DM: thermal freeze out (pb), need boost to PAMELA (nb); light force carrier or non-thermal produced
- Decaying DM: e.g. gravitino: produced via R-parity conserving process, decay via RPV;
- Longevity ($\tau \sim 10^{26}$ s equivalent to nov \sim nb)
 - Gravitino decays via supergravity and RPV interactions $\Gamma \sim \lambda^2 m^7/(8\pi M_{pl}^2 M_{susy}^4)$
 - Also possible via GUT interaction, dimension 6 operator $\Gamma \sim \text{m}^5/(8\pi \text{ M}_{\text{gut}}^4)$

The Dark Matter Candidate in MSSM

- Take MSSM as a complete theory for dark matter and neutrino mass, then R-parity must be violated.
- Neutralino will simply decays too fast, cannot be DM.
- Gravitino decays slowly, is the only candidate.
- Production: from other sparticle decays after inflation

$$\Omega_{3/2}h^2 \approx 0.27 \left(\frac{T_R}{10^{10} \text{ GeV}}\right) \left(\frac{100 \text{ GeV}}{m_{3/2}}\right) \left(\frac{m_{\tilde{g}}}{1 \text{ TeV}}\right)^2$$

- NLSP late decay problem, cured by R-parity violation.

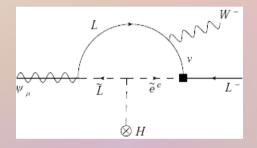

 Decay to SM: can leave distinct signatures visible at LHC
- Source of RPV: λ" break baryon number, μ' leads gravitino to decay to gauge bosons, need to be suppressed.

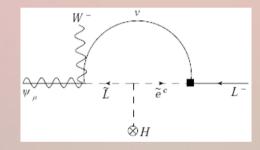
$$W_{\mathcal{H}} = \frac{1}{2}\lambda LLe^c + \lambda'QLd^c + \frac{1}{2}\lambda''u^cd^cd^c + \mu'LH_u$$

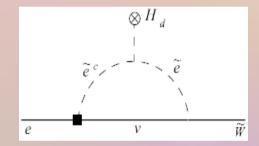
Gravitino Decays I

Tree-level three-body decay:

evel three-body decay:
$$\Gamma_{3}(\psi_{\mu} \to \ell^{+}\ell^{-}\nu) = \frac{\lambda^{2}}{18432\pi^{3}} \frac{m_{3/2}^{4}}{m_{\tilde{\ell}}^{4}} \frac{m_{3/2}^{3}}{M_{\rm Pl}^{2}}$$


• Generally, to fit PAMELA&Fermi, need $10^{-51} < \Gamma_3 < 10^{-49}$ gives an upper bound on slepton mass

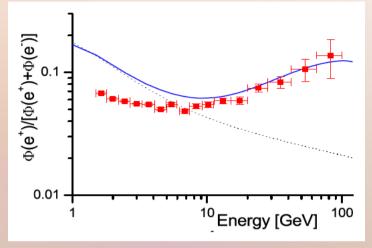

$$m_{\tilde{\ell}} \lesssim 10^4 \,\mathrm{TeV} \left(\frac{\lambda_{\mathrm{max}}^2}{4\pi}\right)^{1/4} \left(\frac{m_{3/2}}{400 \,\mathrm{GeV}}\right)^{7/4} \left(\frac{\Gamma_3}{10^{-51} \mathrm{GeV}}\right)^{-1/4}$$


- Two-body decay, absence of \(\mu' \) forbids tree level decay
 - Effective operator analysis:
 - Dimension 5 operator: $\psi_{\mu} \gamma^{\nu} \gamma^{\mu} (D_{\nu} L) H$ (supercurrent-like)
 - Dimension 6 operator: $\overline{\psi}_{\mu} \sigma^{\mu\nu} LW_{\mu\nu} H$, gauge invariance need the Higgs field.

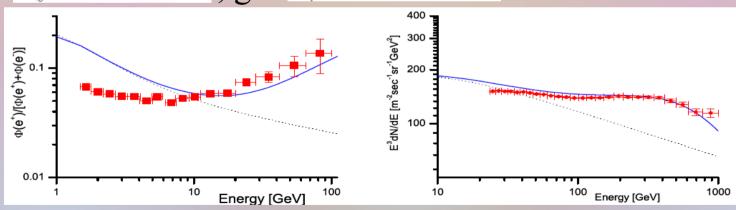
Gravitino Decays II

- In SUSY limit, Kahler and supercurrent are diagonalized simultaneously, eliminate the d=5 operator, hold when SUSY breaking are included by using spurion argument.
- Finite contribute to d=6 operators

• Two-body decay Rate:
$$\Gamma_2(\psi_{\mu} \to W^{\pm}\ell^{\mp}) \simeq \frac{g^2\lambda^2}{18432\pi^5} \frac{(m_{\tilde{\ell}}^2)_{LR}^2}{m_{\tilde{\ell}}^4} \frac{m_{3/2}^3}{M_{\rm Pl}^2}$$


- Gauge boson will lead to antiprotons, suppress 2-body decay compared with 3-body by an order of magnitude.
- This leads to $(m_{\widetilde{\ell}}^2)_{LR} \lesssim m_{3/2}^2$

Fitting the Positron Excesses

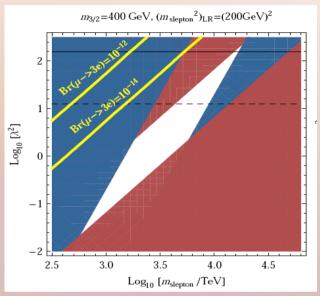

• Fitting PAMELA only, take gravitino mass 400 GeV, only fix the ratio

$$m_{\widetilde{\ell}}^2/\lambda \simeq 1.3 \times 10^7 \, \mathrm{TeV^2}$$

get lifetime: $\tau_{3/2} = 2.3 \times 10^{26} \,\mathrm{sec}$

• To Fit both PAMELA and Fermi, heavier gravitino 3.3 TeV, and $m_{\tilde{\ell}}^2/\lambda \simeq 10^{10}\,\mathrm{TeV}^2$, get $\tau_{3/2}=5\times 10^{25}\mathrm{sec}$

• Up to here, has no prediction on the spectrum yet.


Both PAMELA and Neutrino Mass

• If neutrino mass (0.1eV) is generated by the same λ element

$$m_{\nu} \simeq \frac{\lambda^2 (m_{\widetilde{\ell}}^2)_{LR} m_{\tau}}{16\pi^2 m_{\widetilde{\ell}}^2}$$

• A *Huge* lower bound on the slepton mass

$$m_{\tilde{\ell}} \gtrsim 500 \,\mathrm{TeV} \left(\frac{m_{3/2}}{400 \,\mathrm{GeV}}\right)^{5/2} \left(\frac{M_{\nu}}{0.1 \,\mathrm{eV}}\right)^{1/2} \left(\frac{\Gamma_3}{10^{-49} \mathrm{GeV}}\right)^{-1/2}$$

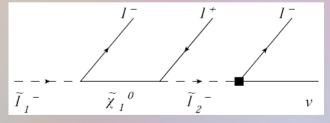
(Bajc, Enkhbat, Ghosh, Senjanovic, YZ, 2010)

- To explain Fermi, need heavier gravitino, larger lower bound.
- λ can be large as long as sleptons are heavy, do not upset low-energy constraints
- Also and upper bound on gravitino mass

$$\left(\frac{m_{3/2}}{3 \, \text{TeV}}\right) \left[0.5 + 0.5 \left(\frac{m_{3/2}}{3 \, \text{TeV}}\right)^2\right]^{1/4} \lesssim \left(\frac{\lambda^2}{4\pi}\right)^{1/3} \left(\frac{\Gamma_3}{10^{-49} \text{GeV}}\right)^{1/3} \left(\frac{m_{\nu}}{0.1 \text{eV}}\right)^{-2/3}$$

Towards the general case

- Need heavy slepton to explain PAMEA and neutrino mass:
 - (i) not overproduce e+ or p: $\Gamma_3 \sim \lambda^2/m^4$,
 - (ii) large enough contribution to $m_v \sim \lambda^2/m^2$.
- Assumptions made so far:
 - (i) $M_L^2 = M_R^2$: if not, same bound for the lighter guy.
 - (ii) Single λ /slepton contribution,
- For 3 famlies, if tune down all λ_{ijk} for given i, then slepton i can be < TeV, if the ratio λ/m^2 is not enhanced;
- This is fine-tuning since slepton mass and λ are not related.
- All sleptons are heavy barring fine-tunings.
- Squarks can be light: depends on contribution to m_v via λ' .


Sketch of NLSP signatures at LHC

- To discover SUSY at LHC, take $m_{3/2}$ <500 GeV, enough for PAMELA; leave Fermi to other origins, e.g. astrophysical.
- Gaugino as NLSP: $\tilde{\chi}_1^0 \to \ell^+ \ell^- \nu$ $\tau_{\text{\tiny NLSP}}^{\tilde{\chi}_1^0} \simeq 10^{-7} \text{sec} \left(\frac{m_{\text{\tiny NLSP}}}{600 \, \text{GeV}}\right)^{-5}$ (decay in the detector, T. Moroi et al, 2008)
- Slepton as NLSP: depending on λ (*displaced vertex*)

$$\Gamma_{\text{NLSP}}(\widetilde{\ell}_1 \to \ell_j \ell_k) = \frac{\lambda_1^2 m_{\text{NLSP}}}{8\pi} \lesssim 6 \times 10^{-13} \,\text{GeV} \left(\frac{m_{\text{NLSP}}}{600 \,\text{GeV}}\right)^5 \left(\frac{m_{3/2}}{400 \,\text{GeV}}\right)^{-7}$$

• If λ_1 =0, four-body decay (*outside the detector*)

$$\tau_{\text{NLSP}}^{\tilde{\ell}_1} \simeq 10^{-3} \text{sec} \left(\frac{m_{\text{NLSP}}}{600 \, \text{GeV}}\right)^{-7} \left(\frac{m_{\tilde{\chi}_1}}{1 \, \text{TeV}}\right)^2$$

• Gluino LSP, decay very slowly (*missing energy*) Lifetime even as long as the BBN time scale $\lambda' > 10^{-11}$

Flavor violation and Baryogenesis

- LFV has two contributions
 - ❖ RPV contribution, proportional to m_v², always supressed even if one slepton is tuned to TeV scale.
 - Usual SUSY loop contribution cannot be supressed if a slepton is light (fine-tuned case).
- Squark mass not necessarily heavy, so QFV is not solved.
- If unification, all sfermions in a family as heavy—split SUSY
- Baryogenesis: Heavy gravitino mass rules out electroweak baryogenesis; Lage λ washes any primordial lepton number,
 - Afflect-Dine baryogenesis is one viable candidate.
 (Enqvist and McDonald, 1998)

Conclusion and Outlook

- We take MSSM seriously, as a complete theory for dark matter, neutrino mass, without ad hoc extensions.
- PAMELA and Fermi e⁺ Excess can be explained by gravitino dark matter (the only candidate) decay.
- The main conclusion: Slepton has to be heavy to explain both PAMELA and neutrino mass. RPV coupling λ can be order 1. Heavy sleptons delay the NLSP decay.
- Distinct NLSP singatures at LHC,
- Fermi-LAT gamma-ray: able to reveal RPV structure:
 - Constraining from γ -rays on different flavor structures in $l_i^+ l_i^- \nu$ final state.

Conclusion and Outlook

- We take MSSM seriously, as a complete theory for dark matter, neutrino mass, without ad hoc extensions.
- PAMELA and Fermi e⁺ Excess can be explained by gravitino dark matter (the only candidate) decay.
- Main conclusion: Slepton (squarkz) has to be heavy to explain both PAMELA and neutrino mass. RPV coupling λ order 1. Heavy sleptons delay the NLSP decay.
- Distinct NLSP singatures at LHC,
- Fermi-LAT gamma-ray: able to reveal RPV structure:
 - Constraining from γ-rays on different flavor structures in l_i +l_j v final state. Thanks!