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Indirect Detections of Dark Matter

 Cosmic ray ¢” Excess without p
» PAMELA, ATIC, Fermi, HESS, HEAT, etc
e Possible astrophysical origins: pulsars, supernovae
remnants, etc
* The existence of dark matter 1s well established by WMAP.
e [t1s extremely interesting 1f due to dark matter oringins.

e More correlated observations:
e Cosmic gamma-ray observations

> v from bremsstralung, prompt decay ("),
inverse-Compton scattering, etc
e High-energy neutrino flux
» dark matter annihilate/decay in the galaxy
» from the core of the sun
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The Nature of Dark Matter Candidates

e Long-lived, weakly interacting, non-baryonic, cold.
e Leptophilic (dynamics or kinematics)

e Annihilating DM: thermal freeze out (pb), need boost to
PAMELA (nb); light force carrier or non-thermal produced

e Decaying DM: e.g. gravitino: produced via R-parity con-
serving process, decay via RPV;

 Longevity (t ~10°s equivalent to nov ~ nb)

» Gravitino decays via supergravity and RPV interactions
I ~ K2m7/ (871: Mpl 21\/[susy 4)

» Also possible via GUT interaction, dimension 6 operator
I ~m’/(8nt M %)




The Dark Matter Candidate in MSSM

 Take MSSM as a complete theory for dark matter and
neutrino mass, then R-parity must be violated.

e Neutralino will sitmply decays too fast, cannot be DM.
e (Gravitino decays slowly, 1s the only candidate.
e Production: from other sparticle decays after inflation

o Tx 100 GeV mg; \?2
Quoh? ~ 0.27 - ( - )
o .j_l.-z 1 i (101” (_‘}E"R?) ( ?n-;j:,-'g ) J_ TE"H?

e NLSP late decay problem, cured by R-parity violation.
Decay to SM: can leave distinct signatures visible at LHC

e Source of RPV: A" break baryon number, p' leads
gravitino to decay to gauge bosons, need to be suppressed.

1 i 1
Wg = EAL-L-EC + NQLd° + E)m”u.fdcd"“ + u'LH,




Gravitino Decays 1
o Tree-level three-body decay: o y
\2 m é /o ;33:3 5 W oL /
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« Generally, to fit PAMELA&Fermi, need 10™' <T'; < 10 i
gives an upper bound on slepton mass

: 1/4 7/ _ —1/4
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e Two-body decay, absence of |1' forbids tree level decay

» Effective operator analysis:
» Dimension 5 operator: Quyvy“(DvL)H (supercurrent-like)

» Dimension 6 operator: Qucs“ LW H, gauge Invariance
need the Higgs field.




Gravitino Decays 11

In SUSY limit, Kahler and supercurrent are diagonalized
simultaneously, eliminate the d=5 operator, hold when
SUSY breaking are included by using spurion argument.

Finite contribute to d=6 operators

W- W- v &) H d

| ©H :i@H | € .:. v
() g 2 (m ZJER % 2
Two-body decay Rate: (v~ W) ~ L T
Gauge boson will lead to antiprotons, suppress 2-body
decay compared with 3-body by an order of magnitude.

This leads to *’”QJLR < f”% 9




Fitting the Positron Excesses

* Fitting PAMELA only, take gravitino =

: ¥ 0.1
mass 400 GeV, only fix the ratio O
m% A~ 1.3 <107 TeV? %
I 9 a9u 1026 cnn -
get lifetime: 732 = 2.3 x 107 scc 001 e
! 1{_}Energy[GeV] 100

e To Fit both PAMELA and Fermi, heavier gravitino 3.3 TeV,
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e Up to here, has no prediction on the spectrum yet.




Both PAMELA and Neutrino Mass

=400 GeV, (1 giepion HLr=(200GeV)?

If neutrino mass (0.1eV) is generated by

the same A element
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(Bajc, Enkhbat, Ghosh, Senjanovic, YZ, 2010) e

To explain Fermi, need heavier gravitino, larger lower bound.

A can be large as long as sleptons are heavy, do not upset low-
energy constraints

Also and upper bound on gravitino mass
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Towards the general case
Need heavy slepton to explain PAMEA and neutrino mass:

(i) not overproduce e+ or p: ', ~A*/m’,
(i) large enough contribution to m_~A"/m".
Assumptions made so far:
(i) M “ =M _*: if not, same bound for the lighter guy.
(1) Single A/slepton contribution,
For 3 famlies, 1f tune down all Ki}k for given 1, then slepton 1

can be < TeV, if the ratio A/m” is not enhanced;
This 1s fine-tuning since slepton mass and A are not related.

All sleptons are heavy barring fine-tunings.

Squarks can be light: depends on contribution tom_ via A"




Sketch of NLSP signatures at LHC

To discover SUSY at LHC, take m;,, <500 GeV, enough for
PAMELA; leave Fermi to other origins, €.g. astrophysical.

Gauglno asS NLSP w“ — (T T&Esp ~ 10~ sec (L‘“FT)_G

600 GeV

(decay in the detector, T. Moroi et al, 2008)
Slepton as NLSP: depending on A (dzsplaced vertex)
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If A,=0, four-body decay (outszde the detector)

0 ~ 10~ 3s0c ( Myysp )_?
L " \600 GeV 1 1<

[

NLP

Gluino LSP, decay very slowly (mlsszng energy)
Lifetime even as long as the BBN time scale A'>10 ™"




Flavor violation and Baryogenesis

 LFV has two contributions
» RPV contribution, proportional to m,?, always supressed
even 1f one slepton is tuned to TeV scale.
» Usual SUSY loop contribution cannot be supressed if a
slepton 1s light (fine-tuned case).
e Squark mass not necessarily heavy, so QFV i1s not solved.
o [f unification, all sfermions in a family as heavy—split SUSY

e Baryogenesis: Heavy gravitino mass rules out electroweak
baryogenesis; Lage A washes any primordial lepton number,

» Afflect-Dine baryogenesis 1s one viable candidate.
(Engvist and McDonald, 1998)




Conclusion and Outlook

We take MSSM seriously, as a complete theory for dark
matter, neutrino mass, without ad hoc extensions.

PAMELA and Fermi e Excess can be explained by
gravitino dark matter (the only candidate) decay.

The main conclusion: Slepton has to be heavy to ex-
plain both PAMELA and neutrino mass. RPV coupling
A can be order 1. Heavy sleptons delay the NLSP decay.

Distinct NLSP singatures at LHC,

Fermi-LAT gamma-ray: able to reveal RPV structure:

» Constraining from y-rays on different flavor
structures in ;"1 v final state.




Conclusion and Outlook

We take MSSM seriously, as a complete theory for dark
matter, neutrino mass, without ad hoc extensions.

PAMELA and Fermi e Excess can be explained by
gravitino dark matter (the only candidate) decay.

Main conclusion: Slepton (squarkz) has to be heavy to
explain both PAMELA and neutrino mass. RPV coup-
ling A order 1. Heavy sleptons delay the NLSP decay.

Distinct NLSP singatures at LHC,

Fermi-LAT gamma-ray: able to reveal RPV structure:

» Constraining from y-rays on different flavor

structures in ;"1 v final state. Thanks!
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