Testing effective Yukawa couplings in Higgs searches at Tevatron & LHC

Emidio Gabrielli CERN PH-TH

in collaboration with B. Mele talk based on arxiv:1005.2498

Planck 2010 31 May - 04 June 2010 **CERN**

Yukawa couplings

- Hierarchy of fermion masses is still a puzzle
- in SM, problem just shifted to the Yukawa sector
- difficult to explain all fermion spectrum and CKM mixing by means of few parameters
- many SM extensions proposed → no one can be considered as conclusive
- maybe ChSB and EWSB have not the same origin
 - → different symmetry-breaking mechanisms
- examples: compositeness, extradimensions, technicolor, unknown mechanism of ChSB?

- However, there are indications that SM Higgs mechanism is behind the EWSB
- EW precision tests favour a light SM Higgs boson
- perturbative unitarity in WW -> WW satisfied

what if the SM Higgs boson is only responsible of EWSB → W and Z masses?

- fermion masses put in by hand, no tree-level Yukawa couplings → explicit ChSB
- SM becomes non-renormalizable, but still it can be considered as an effective field theory

suppose ∧ is the scale where Yukawas are vanishing (i.e. scale of fermion mass generation)

- Yukawa couplings not protected against radiative corrections due ChSB → radiatively generated
- lacksquare we need to re-sum large logs $g_i^{2n} \log^n \left(\Lambda/m_H
 ight)$
- efficient tool → Renormalization Group Equations
- SM RGE are not valid (tree-level Yukawa couplings)

RGE must be derived by keeping Yukawa couplings and fermion masses separate

Relevant Feynman diagrams for the Up Yukawa's beta-functions. Unitary gauge

RGE for Yukawa couplings of U , D quarks SM RGE recovered for $\mathbf{Y}_\mathbf{f}^{\scriptscriptstyle\mathrm{SM}}\to\mathbf{Y}_\mathbf{f}$

$$\frac{d\mathbf{Y}_{\mathbf{U}}}{dt} = \frac{1}{16\pi^{2}} \left\{ 3 \xi_{H}^{2} \left(\mathbf{Y}_{\mathbf{U}} - \mathbf{Y}_{\mathbf{U}}^{\mathbf{SM}} \right) - 3 \mathbf{Y}_{\mathbf{U}}^{\mathbf{SM}} \mathbf{Y}_{\mathbf{D}}^{\mathbf{SM}} \left(\mathbf{Y}_{\mathbf{D}} - \mathbf{Y}_{\mathbf{D}}^{\mathbf{SM}} \right) + \frac{3}{2} \mathbf{Y}_{\mathbf{U}} \left(\mathbf{Y}_{\mathbf{U}} \mathbf{Y}_{\mathbf{U}} - \mathbf{Y}_{\mathbf{D}}^{\mathbf{SM}} \mathbf{Y}_{\mathbf{D}}^{\mathbf{SM}} \right) - \mathbf{Y}_{\mathbf{U}} \left(\frac{17}{20} g_{1}^{2} + \frac{9}{4} g_{2}^{2} + 8 g_{3}^{2} - \mathbf{Tr}(\mathbf{Y}) \right) \right\}, \tag{9}$$

$$\frac{d\mathbf{Y}_{\mathbf{D}}}{dt} = \frac{1}{16\pi^{2}} \left\{ 3 \xi_{H}^{2} \left(\mathbf{Y}_{\mathbf{D}} - \mathbf{Y}_{\mathbf{D}}^{\mathbf{SM}} \right) - 3 \mathbf{Y}_{\mathbf{D}}^{\mathbf{SM}} \mathbf{Y}_{\mathbf{U}}^{\mathbf{SM}} \left(\mathbf{Y}_{\mathbf{U}} - \mathbf{Y}_{\mathbf{U}}^{\mathbf{SM}} \right) + \frac{3}{2} \mathbf{Y}_{\mathbf{D}} \left(\mathbf{Y}_{\mathbf{D}} \mathbf{Y}_{\mathbf{D}} - \mathbf{Y}_{\mathbf{U}}^{\mathbf{SM}} \mathbf{Y}_{\mathbf{U}}^{\mathbf{SM}} \right) - \mathbf{Y}_{\mathbf{D}} \left(\frac{1}{4} g_{1}^{2} + \frac{9}{4} g_{2}^{2} + 8 g_{3}^{2} - \mathbf{Tr}(\mathbf{Y}) \right) \right\},$$
(

$$\mathbf{Y} \equiv N_c \mathbf{Y}_{\mathbf{U}} \mathbf{Y}_{\mathbf{U}} + N_c \mathbf{Y}_{\mathbf{D}} \mathbf{Y}_{\mathbf{D}} + \mathbf{Y}_{\mathbf{E}} \mathbf{Y}_{\mathbf{E}}$$

W(L) polarizations

$$\mathbf{Y_f^{sm}} \equiv \frac{g_2}{\sqrt{2}M_W} \operatorname{diag}[\mathbf{m_f}]$$

Theoretical Framework

- Yukawa couplings set to zero at scale Λ and connected to mH scale by solving the RGE
- only SM degrees of freedoms below \(\Lambda \) assumed

■ |Y(mH)| < 1 satisfied for light Higgs masses top-Yukawa (mH) b-Yukawa (mH)</p>

Higgs decay modes dramatically affected

- main Higgs decays into γγ, WW, ZZ, γZ
- BR(H→ bb) can be comparable to enhanced γγ
- differs from naïve fermiophobic scenarios where Yukawa couplings are set to zero at EW scale

Higgs production mechanisms change

- top-Yukawa coupling radiatively induced (small)
- gluon-gluon fusion suppressed
- Vector boson fusion (VBF) becomes the dominant production mechanism

Higgs branching ratios

SM normalized branching ratios

m_H (GeV)

m_H (GeV)

Higgs production at hadron colliders

Tevatron
$$\sqrt{S} = 1.96 \text{ TeV}$$

- Inclusive cross sections used VB=ZH+WH+VBF
- gg fusion contribution neglected (suppressed by more than SM/100)
- computed at NLO, central values presented

LHC
$$\sqrt{S} = 14 \text{ TeV}$$

- cross section used → VBF at NLO
- gg fusion neglected (a few percent of VBF)
- central values presented

Tevatron cross sections X BR (fb)

LHC14 cross sections X BR (fb)

Conclusions

- Scenario: Yukawa vanishing at a scale A
- radiatively generated at EW scale
- lacksquare enhanced $H o \gamma \gamma, \, WW, \, ZZ, \, Z\gamma$
- non-trivial depletion of bb decay
- Tevatron: could probe mH < 110 GeV</p>
- LHC 14 TeV
 - excellent probe of this scenario
 - VBF signature larger than SM
 - better S/B ratio compared to SM
 - better theoretical accuracy (VBF)
- LC e+e- best probe: allow to directly test radiatively induced Yukawa couplings