Dark matter searches with Imaging Atmospheric Cherenkov telescopes

Emmanuel Moulin Irfu/SPP CEA – Saclay, France

Planck 2010
From the Planck Scale to the ElectroWeak Scale
31 May - 4 June 2010

The current IACT world

Gamma-ray flux from WIMP annihilations

$$\Phi_{\gamma} = \Phi_{PP} \times \Phi_{ASTRO}$$

$$\Phi_{PP} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{DM}^2} \int_{E_{th}}^{m_{DM}} \sum_f BR_f \frac{dN_{\gamma}^f}{dE_{\gamma}} dE_{\gamma}$$

$$\Phi_{ASTRO} = rac{1}{\Delta\Omega} \int_{\Delta\Omega} d\Omega \int_{l.o.s}
ho^2(r[s]) ds$$

Particle Physics:

- Cross sections
- Branching ratios
- Differential photon yield
- DM particle mass

Also:

- ☐ Gamma lines but BR ~10⁻³
- ☐ Internal bremmstrahlung:

GeV to TeV gamma for $E_{\gamma} > 0.6 m_{DM}$

Astrophysics: Dark matter halo

→ model required for the profile

Dark matter « hot spots »

Searches performed on amplification sites

Galactic Centre

- ☐ Proximity (~8kpc)
- □ Possibly high DM concentration :
 - DM profile : core? cusp?
- ☐ High astrophysical background

Galaxy satellites of the Milky Way

- ☐ Many of them within the 100 kpc from GC
- ☐ High M/L
- ☐ Low astrophysical

background

Intermediate Mass

Black Hole

- ☐ High signal
- Clean signal
- ☐ Unproven existence

Galaxy clusters

- ☐ High signal
- ☐ High astrophysical background signal

Substructures in the Galactic halo

- Lower signal
- Cleaner signal

Motconorpalx

Emmanuel Moulin

PLANCK 2010

The TeV signal from the Galactic Center

- Bulk of VHE emission from Sgr A East excluded
- SMBH and PWN are good candidates
- Most probably, if DM signal exists is overcome by standard astrophysical emitters
- A DM contribution is not excluded: estimated to be < 10%

Interpretation of DM signal embedded in astrophysical emission is hard

Satellite galaxies of the Milky Way

☐ HESS:

- 2006 Sagittarius: 11 h

- 2007 Canis Major: 9 h

- 2008/2009 Sculptor, Carina

□ MAGIC:

- 2008 Draco: 8 h

- 2009 Willman 1: 15 h

□ VERITAS:

- Draco: 20h
- Ursa Minor: 20 h
- Willman 1: 15h

Only very high flux enhancement can be excluded

No dark matter signal so far, nor hints only upper limits

HESS constraints on DM annihilations from Sagittarius

- Distance from Sun: 24 kpc
- Mass $\sim 3x10^8$ M_{sun}
- Tidally disrupted

BUT the DM halo modelling is hard due to tidal disruption Core/Cusp profile?

Exclusion on the velocity-weighted annihilation cross-section:

- pMSSM models obtained with DarkSUSY4.1
- ⇒ large scan of the parameter space

Strong contraints with the core model:

neutralinos: <σv> ~ 2 x 10⁻²⁵ cm³s⁻¹

For LKP: $<\sigma v> \sim 4 \times 10^{-26} \text{ cm}^3 \text{s}^{-1}$

Emmanuel Moulin PLANCK 2010

Sculptor/Carina dwarf galaxies (1)

- Distance from Sun: 79 kpc
- Mass $\sim 1 \times 10^9 \, \mathrm{M_{sun}}$
- No significant disruption

- Distance from Sun: 101 kpc
- Mass ~2x10⁸ M_{sun}
- Some disruption

- □ Various DM halo profiles → helps to estimate the astrophysical uncertainties
- □ Astrophysical factor enhancement from substructures:
 - negligible for pointlike searches towards the galaxy center (a few percent)

Sculptor/Carina dwarf galaxies (2)

- Particle physics enhancement: Sommerfeld effect
- particularly effective in the low-velocity regime
- Internal bremsstrahlung:
- → may enhance the gamma-ray flux in some specific region of the MSSM parameter space

- ☐ In stau coannihilation region of mSUGRA: considerable contribution for wino annihilation from the IB (Bringmann et al., 2008)
- ☐ Significant effect on the limit in the low mass regime

Dark matter in Galactic globular clusters? The example of M15

- ☐ Optimistic DM halo profile
- □ Exclusion on $<\sigma v>$ (95% C.L.): $\sim 10^{-23}$ cm³s⁻¹

Not possible to exclude any MSSM models

- No clear observational evidence of a significant amount of DM
- Mass profile well described by a pure baryonic component
- However, in the cosmological formation paradigm, globular clusters may have been formed in a DM halo

HESS constraints on M15

Whipple limit with AC halo

H.E.S.S. limit using Whipple DM halo modelling

- ✓ Very dense stellar environment
- ✓ Hypothetical DM halo affected by scattering off of stars
- → DM in the core likely to have been wiped out

- ☐ Interaction between stars and DM cannot be neglected
- □ Dark matter halo modelling is hard

HESS constraints on NGC 6388

Constraints using a realistic DM halo profile of ~10⁻²³ cm³s⁻¹

- ☐ Initial DM profile : NFW
- ☐ Adiabatic contraction of DM by baryons infall
- ☐ Adiabatic black hole growth may have steepened the DM profile
- ☐ Scattering off of stars on DM
 - → DM in the core likely to have been wiped out

12

Substructures in Galactic haloes

The DM halo of a Milky Way-like Galaxy:

→ Concentration of dark matter in massive halo objects : clumps

80 kpc

HESS flux sensitivity map to Dark Matter annihilations

- H.E.S.S. flux sensitivity map in a large field of view: [-30,60] x[-3,3] deg.²
- \Rightarrow at the level of 10⁻¹² cm⁻²s⁻¹

The case for DM mini-spikes around Intermediate Mass Black Holes

- ~100 IMBHs de ~ 10^5 M $_{\odot}$ in the Galactic halo (Koushiappas, 2004)
- Accumulation of DM around these objetcs (Bertone, 2005)

Gamma-ray luminosity from IMBH:

H.E.S.S. sensitivity can put strong constraints on particle physics models in this scenario

□ Strong contraints
 on the annihilation
 cross section inMSSM
 □ Contraints on
 the entire gamma-ray
 production scenario
 around IMBHs

Summary

- ☐ Galactic Center
 - ✓ Bulk of the gamma-ray signal unlikely to be of dark matter origin
 - ✓ Standard astrophysical emitters
- ☐ Dwarf satellite galaxies of the Milky Way
 - ✓ Some of them are already observed: Draco, Sagittarius, Wilman 1, Sculptor, Carina
 - ✓ No TeV gamma-ray signal
 - ✓ Astrophysical uncertainties on the dark matter halo profile
- ☐ Galactic globular clusters:
 - ✓ No TeV gamma-ray signal towards M15, NGC6388
 - ✓ DM halo modelling required to handle correctly the influence of stars
- ☐ Galactic substructures in the Galactic halo:
 - ✓ One IMBH minispike formation, albeit optilmistic, scenario well constrained by HESS
 - ✓ Robust constraints obtained from a widely accepted N-body simulation Via Lactea