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Motivations for new physics at the TeV scale:

Hierarchy Problem

δm2
H ∼

g2

8π2 Λ2
SM ∼ M2

Z =⇒ ΛSM ∼ 1 TeV

Dark Matter

Thermal WIMP with ΩDMh2 ∼ 0.1
g4

( mDM
1 TeV

)2 ∼ 0.1

=⇒ mDM ∼ 1 TeV

Many new physics models solving the hierarchy problem while
providing a DM candidate involve a Z2-symmetry under which
the new particles are Z2-odd, while the SM particles are Z2-even:

SUSY with R-parity, UED with KK-parity,
Little Higgs with T-parity, ...

* At colliders, new particles are produced always in pairs.
* Lightest new particle is stable, so a good candidate for WIMP DM.



LHC Signal

Pair-produced new particles (Y + Ȳ) decaying into visible SM
particles (V) plus invisible WIMPs (χ):

pp → U + Y + Ȳ → U +
∑

i

V(pi) + χ(k) +
∑

j

V(qj) + χ(l)

Multi-jets
(

+ Leptons
)

+ p/T Events:

U ≡ Upstream momenta carried by the visible SM particles not from
the decay of Y + Ȳ , e.g. initial state radiation (ISR).



To identify the underlying theory for these new physics events, it is
crucial to determine the mass and spin of the involved new particles.

If we don’t want to rely on specific-model-dependent matrix elements,
we need to use a kinematic method for mass and spin measurement.

However kinematic method suffers from
* Initial parton momenta in the beam-direction are unknown.
* Each event involves two missing WIMPs.

There are several approaches proposed to overcome these difficulties:
MT2 and MAOS momentum provide one of those ways to determine
the mass and/or spin of new particles in missing energy events at
LHC, which can work even when long decay chain is not available.



Kinematic Methods for Mass Measurement

Endpoint Method Hinchliffe et. al.; Allanach et. al.; Gjelsten et. al.;...

Endpoint value of the invariant mass distribution of visible (SM)
decay products depend on the involved new particle masses.



Long decay chain can be particularly useful as it can provide enough
number of endpoint values to determine all of the involved new
particle masses.

n-step cascade decay:

* Number of measurable invariant mass distributions: 2n − (n + 1)
* Number of unknown new particle masses: n + 1.

=⇒ For n ≥ 3, there can be enough number of independent endpoint
values to determine (in principle) all of the involved new particle
masses. (cf: discrete ambiguities)



Mass Relation Method Nojiri, Polesello,Tovey; Cheng et. al.; ...

Reconstruct the missing particle momenta with on-shell and other
available constraints.

Symmetric pair of n-step cascade decays:

* Number of unknowns for N-events: 8N + (n + 1)
(2N-missing momenta + (n + 1)-unknown masses)

* Number of constraints: [2(n + 1) + 2] N
(mass relations + p/T constraints)

=⇒ For n ≥ 3 and N ≥ (n + 1)/2(n− 2), on-shell mass relations
and p/T constraints can provide more constraints than those necessary
for reconstructing the missing momenta. (cf: discrete ambiguities)



Long decay chain can be particularly useful for the endpoint and mass
relation methods.

On the other hand, there are many new physics models which do not
provide such a long decay chain:

* SUSY models with relatively heavy sfermions:
Focus point scenario, Yukawa-unified SUSY GUT, D-term mediation,
Loop-split SUSY, ...
Dominant decay modes:

• Enough number of constraints for mass relation method are
not available.
• Endpoint point method can provide only a partial information

on the new particle spectrum, e.g. mass differences.



MAOS (MT2-Assisted-On-Shell) Reconstruction Cho,KC,Kim, Park

Even when enough number of constraints are not available, one can
attempt to (approximately) reconstruct the missing particle momenta
just using the available minimal constraints:

pp → U + Y + Ȳ → U +
∑

V(pi) + χ(k) +
∑

V(qj) + χ(l)

Introduce trial masses mY and mχ

(
true masses: mtrue

Y and mtrue
χ

)
of

mother particle and WIMP, and impose the minimal constraints:

k2 = l2 = m2
χ, (k + P)2 = (l + Q)2 = m2

Y , kT + lT = p/T

( P =
∑

pi, Q =
∑

qj )

6 constraints for 8 unknowns (kµ, lµ), so two-parameter set of
solutions for each event, which can be parameterized by kT .



Solution of the minimal constraints:

kmaos
z =

1
P2 + P2

T

(
APz ± P0

√
A2 − (P2 + P2

T)(m2
χ + k2

T)

)
lmaos
z =

1
Q2 + Q2

T

(
BQz ± Q0

√
B2 − (Q2 + Q2

T)(m2
χ + l2T)

)
Pµ =

∑
pµi = (P0,PT ,Pz), Qµ =

∑
qµj = (Q0,QT ,Qz)

A =
1
2

(m2
Y − m2

χ − P2) + PT · kT , B =
1
2

(m2
Y − m2

χ − Q2) + QT · lT

Real-valued solution exists iff

A2 ≥ (P2 + P2
T)(m2

χ + k2
T), B2 ≥ (Q2 + Q2

T)(m2
χ + l2T)

⇐⇒ mY ≥ max
(

MT(P,kT ,mχ),MT(Q, lT ,mχ)
)

M2
T(P,kT ,mχ) ≡ Transverse mass of Y → V(P) + χ(k)

= P2 + m2
χ + 2

√
P2 + P2

T

√
m2
χ + k2

T − 2PT · kT .



For given trial
(
mY ,mχ

)
, to have real-valued solution for the largest

possible number of events, choose (event-by-event)

kT = kmaos
T , lT = lmaos

T (kmaos
T + lmaos

T = p/T)

max
(

MT(P,kmaos
T ,mχ),MT(Q, lmaos

T ,mχ)
)

= min
kT+lT=p/T

[
max

(
MT(P,kT ,mχ),MT(Q, lT ,mχ)

) ]
≡ MT2(P,Q,p/T ; mχ) Lester and Summers

MAOS momenta are real-valued for all events if

mY ≥ Mmax
T2 (mχ) ≡ max

{events}

[
MT2(event; mχ)

]
Mmax

T2 (mχ = mtrue
χ ) = mtrue

Y in the zero width limit.

=⇒ With MT2, one can select an one-parameter set of trial masses
most favored for the reconstruction of missing particle momenta,
which includes

(
mtrue
χ ,mtrue

Y

)
: (See also Cheng and Han)(

mχ,mY
)

=
(
mχ,Mmax

T2 (mχ)
)



Mmax
T2 (mχ) by itself contains a kinematic information to

determine both mtrue
χ and mtrue

Y :

Kink at mχ = mtrue
χ =⇒ Mmax

T2 (mχ = mtrue
χ ) = mtrue

Y .

For the endpoint events with MT2(mχ = mtrue
χ ) = mtrue

Y ,
the reconstructed MAOS momenta correspond to
the true missing particle momenta:

kmaos
µ = ktrue

µ for endpoint events

=⇒ MAOS momentum provides a systematic approximation to
the true missing particle momentum as one can reduce
∆k/k ≡ (kmaos

µ − ktrue
µ )/ktrue

µ with an MT2-cut selecting
near-endpoint events.



∆kT

kT
≡

k̃T − ktrue
T

ktrue
T

distribution for q̃q̃∗ → qχq̄χ :

k̃T = 1
2 p/T

(
k̃T + l̃T = p/T

)
k̃T = kmaos

T for full events,
k̃T = kmaos

T for the top 10 % of near endpoint events
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MT2-kink Cho,KC,Kim, Park

pp → U + Y + Ȳ → U +
∑

V(pi) + χ(k) +
∑

V(qj) + χ(l)

MT2(P,Q,p/T ; mχ) = min
kT+lT=p/T

[
max

(
MT(P,kT ,mχ),MT(Q, lT ,mχ)

) ]
(
P =

∑
pi, Q =

∑
qj
)

To understand the origin of kink, consider symmetric endpoint events:

P2 = Q2, PT = QT , MT2(mχ = mtrue
χ ) = mtrue

Y .

=⇒ Two parameter, (ET , uT), set of endpoint events whose
MT2-curves have different slopes at mχ = mtrue

χ :

M2
T2(mχ) = −u2

T
4

+

ET +

√(√
(mtrue

Y )2 + u2
T/4− ET

)2

+ m2
χ − (mtrue

χ )2

2

(
ET =

√
P2 + P2

T , uT = UTM (upstream transverse momentum)
)



mΧ

MT2

m
Χ

true

mY
true ,uTP2

Mmax
T2 (mχ) = max

{all events}

[
MT2(event; mχ)

]
has a kink at mχ = mtrue

χ .

Kink can be sharp enough to be visible if
• the invariant mass-square P2 can have a wide range of value, which
would be the case when

∑
V(pi) is a multi-particle state.

Cho,KC,Kim, Park

• same for the UTM uT , which would the case when Y is produced
with a large ISR or produced by the decay of heavier particle.

Gripaios; Barr,Gripaios,Lester



UTM Kink: mtrue
Y : mtrue

χ = 2 : 1

P2 = 0, |uT | = 0, mtrue
Y , 2mtrue

Y

mΧ

MT2

m
Χ

true

mY
true

Invariant Mass Kink: mtrue
Y : mtrue

χ = 6 : 1

0 ≤ P2 ≤ (mtrue
Y − mtrue

χ )2, 0 ≤ |uT | ≤ mY

mΧ

MT2

m
Χ

true

mY
true ,uTP2



Invariant Mass Kink for Cascade Decay:

0 ≤ P2 ≤ ((mtrue
Y )2 − (mtrue

I )2)(1− (mtrue
χ )2/(mtrue

I )2), uT = 0

mΧ

MT2

m
Χ

true

mY
true

mΧ

MT2

m
Χ

true

mY
true

mtrue
I '

√
mtrue

Y mtrue
χ mtrue

Y : mtrue
I : mtrue

χ = 6 : 4 : 1



Application to Mass and Spin Measurement

Real application should suffer from various uncertainties:
Jet momentum resolution, Combinatorics, Backgrounds, ...

Some Remarks:
• To reduce the smearing of endpoint by jet momentum uncertainties,

M2
vis = P2 =

(∑
pi

)2
−→ M2

Tvis = 2
∑
i>j

(|pTi||pTj| − pTi · pTj)

• To deal with the combinatorics of {P,Q, u}, one can use

MTGen = min
{combinatorics}

MT2(P,Q, u) Barr,Lester, Stephens

• MT2 and MAOS momentum can be useful also for some SM process:

t̄t→ bW+b̄W− → b`+νb̄`ν̄, h→ W+W− → `+ν`ν̄

• Generalization to more general event topology:
“algebraic singularity method” Parallel talk by Ian Woo Kim



MT2-Kink for Mass Measurement

Example 1: Gluino-Chargino MT2 for Focus Point Scenario (SPS2):

mg̃ ' 780, mχ±
1
' mχ0

2
' 230, mχ0

1
' 120

(
mq̃,˜̀∼ 1500

)
Event generation by PYTHIA6.4 at

√
s = 14 TeV,

∫
L = 100 fb−1,

and detector simulation with PGS4

Select the events with
* n(hard jet) ≥ 4, n(isolated `) = 2 (` = e± or µ±)

* |pT |(j1, j2, j3, j4) > 100, 50, 50, 50 GeV
* |p/T | > max(100, 0.2Meff)

(
Meff = |p/T |+

∑
|pT |(ji) +

∑
|pT |(`)

)
* |m`¯̀− mZ| > 25, ...

Assume these events arise from

g̃g̃→ qqχ±1 qqχ±1 (χ±1 → χ0
1W± → χ0

1`
±ν)

and pretend leptons to be invisible, which means χ±1 are regarded as
missing particles.



To deal with jet combinatorics, use

MTGen = min
{jet combnatorics}

[
MT2(P,Q, u)

]
MT2-kink analysis gives rise to
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mg̃ = 774± 23, mχ±
1

= 225± 25 GeV.



Example 2: Gluino-Neutralino MT2 for Yukawa-unified SUSY GUT:
Altmannshofer,Guadagnoli,Raby, Straub

mg̃ ' 470, mχ±
1
' mχ0

2
' 118, mχ0

1
' 59

(
mq̃,˜̀∼ few TeV

)
Similar analysis for g̃g̃→ bb̄χ0

2bb̄χ0
2 (χ0

2 → χ0
1γ) and pretend

photons to be invisible, which means χ0
2 are regarded as missing

particles. Parallel talk by Diego Guadagnoli
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2
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MAOS Momentum and Spin Measurement
Example 1: Drell-Yan pair production of slepton or KK-lepton for

SUSY SPS1a point and its UED equivalent:

dΓ

d cos θY
and

dΓ

d cos θ`
of qq̄ → Z0/γ → YȲ → `χ¯̀χ

Y = slepton or KK-lepton, χ = LSP or KK-photon,
cos θY = p̂Y · p̂beam in the CM frame of YȲ,

cos θ` = p̂` · p̂beam in the CR(rapidity) frame of `¯̀

*
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With MAOS momentum, the mother particle production angle
(cos θY ) can be reconstructed:

dΓ

d cos θ` (Barr)
vs

dΓ

d cos θmaos
Y (Cho,KC,Kim, Park)

under appropriate event cut (3 the MT2-cut selecting the top 30 %):(
θmaos

Y for mχ = 0,mY = Mmax
T2 (0) shows a similar behavior, so the

knowledge of masses is not essential.
)
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Example 2: Gluino or KK-gluon 3-body decay for SPS2 point
and its UED equivalent:

s =
(
pq + pq̄

)2
, tmaos =

(
pq (or pq̄) + kmaos)2

Without kmaos
µ , one may consider the s-distribution dΓ/ds to

distinguish gluino from KK-gluon: Csaki,Heinonen, Perelstein

s

dG

ds



With kmaos
µ , one can use the s-tmaos distribution

(
dΓ/dsdtmaos

)
:
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gluino 3-body decay KK-gluon 3-body decay

Including various uncertainties (jet momentum, combinatorics, SUSY
backgrounds), the s-distribution

(
dΓ/ds

)
for SPS2 can not distinguish

SUSY from UED even with
∫
L = 300 fb−1.

On the other hand, the s-tmaos distribution
(
dΓ/dsdtmaos

)
can clearly

discriminate SUSY from UED. Cho,KC,Kim, Park



Conclusion

MT2 and MAOS momentum are the collider variables which can
be useful for the mass and/or spin measurement of new particles
in missing energy events at LHC.

* MT2-kink might be able to determine new particle masses even
when a long cascade decay is not available.

* MAOS momentum provides a systematic approximation to the
missing particle momentum, so might be useful for the
determination of new particle properties, e.g. mass and spin.

MT2 and MAOS momentum can be useful also for some SM
process with two missing neutrinos:

* t̄t→ bW+b̄W− → b`+νb̄`ν̄
* h→ W+W− → `+ν`ν̄


