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Figure 1: Evolution of the three gauge couplings, ga (a = 1, 2, 3), in the SM. The SU(5)
normalization for the hypercharge gauge coupling is taken.

In the first years after LEP, the first two items above provided a strong motivation for taking

supersymmetry as the leading candidate for understanding the weak scale. However, the absence

of a light Higgs boson is certainly a problem for simple natural theories. Furthermore, together

with experimental bounds on superpartner masses, it pushes these theories into regions where the

superpartner WIMP candidates are also unnatural. This unease with weak scale supersymmetry

is compounded by the lack of any signals of new flavor or CP violation beyond the SM, such

as b → sγ, and by cosmological issues, such as the gravitino problem. Over the years there

were many opportunities for supersymmetry to become manifest, leaving us today with many

reasons to question weak scale supersymmetry. The single remaining success is gauge coupling

unification, and while this is certainly significant, one wonders whether a decrease in the unified

threshold corrections by an order of magnitude might be an unfortunate accident. Even without

supersymmetry, unification can occur, either by enhancing these threshold corrections or by

certain matter surviving below the unified scale. Indeed, the evolution of the gauge couplings

in the SM shows evidence for unification [1], as shown in Figure 1, and precision unification

requires only a small perturbation to this picture.

What, then, is the origin of the weak scale? It has been suggested that the weak scale may

result from anthropic, or environmental, selection [2]. In particular, if the Higgs mass parameter

scans effectively in the multiverse, but not the Yukawa couplings, then the requirement of the

stability of some complex nuclei requires that the weak scale be no more than a factor two

larger than we measure [2, 3]. In this picture, most universes have weak interactions broken at

a very high scale or by QCD dynamics, but they contain no complex nuclei and consequently

2
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In the first years after LEP, the first two items above provided a strong motivation for taking

supersymmetry as the leading candidate for understanding the weak scale. However, the absence

of a light Higgs boson is certainly a problem for simple natural theories. Furthermore, together

with experimental bounds on superpartner masses, it pushes these theories into regions where the

superpartner WIMP candidates are also unnatural. This unease with weak scale supersymmetry

is compounded by the lack of any signals of new flavor or CP violation beyond the SM, such

as b → sγ, and by cosmological issues, such as the gravitino problem. Over the years there

were many opportunities for supersymmetry to become manifest, leaving us today with many

reasons to question weak scale supersymmetry. The single remaining success is gauge coupling

unification, and while this is certainly significant, one wonders whether a decrease in the unified

threshold corrections by an order of magnitude might be an unfortunate accident. Even without

supersymmetry, unification can occur, either by enhancing these threshold corrections or by

certain matter surviving below the unified scale. Indeed, the evolution of the gauge couplings

in the SM shows evidence for unification [1], as shown in Figure 1, and precision unification

requires only a small perturbation to this picture.

What, then, is the origin of the weak scale? It has been suggested that the weak scale may

result from anthropic, or environmental, selection [2]. In particular, if the Higgs mass parameter

scans effectively in the multiverse, but not the Yukawa couplings, then the requirement of the

stability of some complex nuclei requires that the weak scale be no more than a factor two

larger than we measure [2, 3]. In this picture, most universes have weak interactions broken at

a very high scale or by QCD dynamics, but they contain no complex nuclei and consequently
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The Higgs Mass Range
λ(m̃) =

g2(m̃) + g′2(m̃)
8

cos22β SM up to m̃ = 1014 GeV (∼Mu)

 Scale      to weak scale:λ introduces a dependence on       and mt αs
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Figure 2: The Higgs mass prediction in the SM for theories where the boundary condition for the
quartic coupling at m̃ is given by Eq. (2), for fixed values of m̃ = 1014 GeV and αs(MZ) = 0.1176.
The solid red curve gives the Higgs mass prediction for mt = 173.1 GeV, while the shaded red
band shows the uncertainty that arises from the experimental uncertainty in the top quark mass
of ±1.3 GeV. The horizontal blue lines show the corresponding asymptotes of the prediction for
large tanβ. For tan β < 1, an identical figure results provided the horizontal axis is labeled by
cotβ.

section 3.3 we discuss the relation to other work.

All figures and analytical results are obtained using two-loop renormalization group (RG)

scaling of all couplings from m̃ to the weak scale, together with one-loop threshold corrections

at the weak scale, including the one-loop effective potential for the Higgs field. In addition,

we include the two- and three-loop QCD threshold corrections in converting the top-quark pole

mass to the MS top Yukawa coupling, since they are anomalously large. Experimental values of

mt = 173.1 ± 1.3 GeV [11] and αs(MZ) = 0.1176 ± 0.002 [12] are used.

3.1 SM below m̃

In a general supersymmetric model, the SM Higgs doublet may be a combination of super-

symmetric Higgs doublets having opposite hypercharge so that, before including threshold cor-

rections, the boundary condition on the quartic coupling is given by Eq. (2). The resulting

prediction is actually a correlation between the Higgs boson mass and the parameter tanβ, as

shown by the solid red curve in Figure 2. Remarkably, even as β varies over all possible values,

the Higgs mass lies in a narrow, high-scale supersymmetry, window of ! (128 – 141) GeV. Fur-

thermore, for large values of tanβ the Higgs mass rapidly asymptotes to ! 141 GeV, shown by

8
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Figure 3: The evolution of the quartic coupling with energy E in the SM with the supersymmetric
boundary condition of Eq. (3), for fixed values of m̃ = 1014 GeV, mt = 173.1 GeV and αs(MZ) =
0.1176. The solid curve is for δ = 0, while the long (short) dashed curves are for δ = ±0.1 (±0.2).

the blue line, reaching 1 GeV of this asymptote at tan β ! 6.

As discussed in the next section, in many simple supersymmetric theories the parameter tan β

is too large to be relevant or even does not exist, so that from now on we study the boundary

condition

λ(m̃) =
g2(m̃) + g′2(m̃)

8
{1 + δ(m̃)} , (3)

where δ includes all threshold corrections from the scale m̃, and is expected to be " 1 if m̃

is chosen close to the superparticle masses. The effect of finite tan β can be included as a

contribution to δ

δβ = −
4

tan2β
+ O

(

1

tan4β

)

. (4)

The Higgs mass prediction following from Eq. (3) takes the form MH = MH(m̃, δ(m̃)), with

both an explicit dependence on m̃ and an implicit one via δ. Since m̃ is an arbitrary matching

scale, MH is independent of m̃: the explicit and implicit dependences cancel. However, MH does

depend on the spectrum of superpartners via the expression for δ, with a typical sensitivity that

can be estimated by studying the explicit dependence of MH on m̃, or equivalently on δ. As

shown below, for a wide range of m̃ and δ, these sensitivities of MH(m̃, δ) are extremely mild.

In Figure 3, we show the numerical solution for the running coupling λ(E) as a function

of energy E, for δ = 0, ±0.1, and ±0.2 for m̃ = 1014 GeV. These curves show an important

convergence property: the effects of the very large threshold corrections at m̃ are greatly reduced

in the infrared. The quartic coupling is being strongly attracted towards an infrared quasi-fixed

9
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g2(m̃) + g′2(m̃)

8
(1 + δ(m̃))

 RG scale to low energies

δ = ±0.1

δ = ±0.2

attracted towards an IR quasi fixed point
Reduces    by factor 6δ

λ
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Figure 4: The explicit dependence of the Higgs mass prediction on m̃ in the SM, with
αs(MZ) = 0.1176. The narrow red shaded region has mt = 173.1 GeV, with the three solid
curves corresponding to (from bottom) δs = 0, 0.02 and 0.04. The upper (lower) dashed red
curve shows the prediction when the top quark mass is increased (decreased) by 1.3 GeV. The
vertical blue lines correspond to values of m̃ in the region suggested by gauge coupling unification
in the SM, Mu = 1014±1 GeV.

point so that, at the weak scale, the fractional uncertainty in the coupling is reduced by about

a factor of 6. This convergence of the infrared flow reduces the sensitivity of the Higgs boson

mass to δ

δMH = 0.10 GeV

(

δ

0.01

)

, (5)

where δ has been arbitrarily normalized to 0.01. Note that the attraction is not quite so strong as

to erase the sensitivity of low energy measurements to the value of the supersymmetric boundary

condition. This therefore still allows us to probe the existence of supersymmetry at high scales.

In Figures 2 and 3 we have taken m̃ = 1014 GeV because, as we argued in the previous

section, we expect supersymmetry breaking to be not far from the scale of unification, which

from Figure 1 is seen to be of order 1014 GeV. However, Figure 1 also shows that Mu has large

uncertainties, and the superparticle masses may not be exactly at Mu. An uncertainty in the

Higgs boson mass induced by varying m̃ from 1014 GeV, however, is extremely small

δMH = 0.14 GeV

(

log10

m̃

1014 GeV

)

, (6)

as shown by the curves of Figure 4 for a fixed value of δ. As m̃ increases above 1012 GeV, it is

apparent that the Higgs mass is remarkably insensitive to even large variations in m̃. The Higgs
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couplings to the quarks and charged leptons give negligible effects. If neutrino masses are of

Dirac type, then the neutrino Yukawa couplings are also very small and are irrelevant. However,

for Majorana masses arising from the seesaw mechanism, there is the possibility of a correction

to the Higgs mass if the right-handed neutrino mass, MR, is less than m̃, in which case

δν =
1

8π2

(

m2
νM

2
R

λv4
− 2

mνMR

v2

)

ln
m̃

MR
" 0.004

MR

1014 GeV

(

1.4
MR

1014 GeV
− 1

)

ln
m̃

MR
, (9)

where in the last expression we have taken mν = 0.05 eV, corresponding to the heaviest neu-

trino mass for the normal hierarchy spectrum. The correction is small; |δMH | <∼ 0.1 GeV

for MR ≈ 1014 GeV and completely negligible for MR % 1014 GeV. In the special case

m̃ > MR > 1014 GeV, the correction rapidly grows, giving δMH ≈ 1 GeV for MR = 5×1014 GeV,

corresponding to a neutrino Yukawa coupling of ≈ 1. We stress that δν vanishes if right-handed

neutrinos are above m̃.

Having discussed the threshold corrections at the scale m̃, we now turn to uncertainties that

result from scaling between m̃ and v. Indeed, at present the largest uncertainty in the Higgs

mass prediction arises from the experimental uncertainties in mt and αs, which enter the RG

equation for λ at one and two loops, respectively. The present 1.3 GeV uncertainty in mt leads

to a 1.8 GeV uncertainty in the Higgs mass, as illustrated by the dashed curves of Figure 4. A

conservative estimate of the uncertainty in αs is ±0.002 [12], leading to δMH = ∓1.0 GeV. A

recent analysis of all relevant data argues that the uncertainty in αs is a factor three smaller [13].

The final uncertainties arise from higher loop effects in RG scaling and in the top quark

threshold correction. First, the correction from three-loop QCD RG scaling decreases the Higgs

mass by 0.2 GeV. We have not computed three-loop running from the top Yukawa coupling and

λ, but do not expect these to be significantly larger than the three-loop QCD running. Second,

in going from the top quark pole mass to the MS top Yukawa coupling, the QCD corrections

reduce the Higgs mass by 11.9, 2.7 and 0.8 GeV from one, two and three loops, respectively. As

the loop level is increased, the successive reductions of the corrections by 23% and 30% suggest

that the four-loop effect will be of order 30% of the three-loop correction, i.e. 0.24 GeV. Hence,

we arrive at a conservative estimate of the higher loop uncertainties in the Higgs mass prediction

of ±0.5 GeV.

Collecting these results leads to our final prediction for the Higgs boson mass in the SM

MH = 141.0 GeV + 1.8 GeV

(

mt − 173.1 GeV

1.3 GeV

)

− 1.0 GeV

(

αs(MZ) − 0.1176

0.002

)

+ 0.14 GeV

(

log10

m̃

1014 GeV

)

+ 0.10 GeV

(

δ

0.01

)

± 0.5 GeV, (10)

where δ = δβ + δs + δν + · · · . As explained above, δβ,ν may vanish, so that only δs is mandatory;

thus we have chosen to scale δ by a numerical factor following from Eq. (8). Our result shows
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αs(MZ) = 0.1176. The narrow red shaded region has mt = 173.1 GeV, with the three solid
curves corresponding to (from bottom) δs = 0, 0.02 and 0.04. The upper (lower) dashed red
curve shows the prediction when the top quark mass is increased (decreased) by 1.3 GeV. The
vertical blue lines correspond to values of m̃ in the region suggested by gauge coupling unification
in the SM, Mu = 1014±1 GeV.
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where in the last expression we have taken mν = 0.05 eV, corresponding to the heaviest neu-

trino mass for the normal hierarchy spectrum. The correction is small; |δMH | <∼ 0.1 GeV

for MR ≈ 1014 GeV and completely negligible for MR % 1014 GeV. In the special case

m̃ > MR > 1014 GeV, the correction rapidly grows, giving δMH ≈ 1 GeV for MR = 5×1014 GeV,

corresponding to a neutrino Yukawa coupling of ≈ 1. We stress that δν vanishes if right-handed

neutrinos are above m̃.

Having discussed the threshold corrections at the scale m̃, we now turn to uncertainties that

result from scaling between m̃ and v. Indeed, at present the largest uncertainty in the Higgs

mass prediction arises from the experimental uncertainties in mt and αs, which enter the RG

equation for λ at one and two loops, respectively. The present 1.3 GeV uncertainty in mt leads

to a 1.8 GeV uncertainty in the Higgs mass, as illustrated by the dashed curves of Figure 4. A

conservative estimate of the uncertainty in αs is ±0.002 [12], leading to δMH = ∓1.0 GeV. A

recent analysis of all relevant data argues that the uncertainty in αs is a factor three smaller [13].

The final uncertainties arise from higher loop effects in RG scaling and in the top quark

threshold correction. First, the correction from three-loop QCD RG scaling decreases the Higgs

mass by 0.2 GeV. We have not computed three-loop running from the top Yukawa coupling and

λ, but do not expect these to be significantly larger than the three-loop QCD running. Second,

in going from the top quark pole mass to the MS top Yukawa coupling, the QCD corrections

reduce the Higgs mass by 11.9, 2.7 and 0.8 GeV from one, two and three loops, respectively. As

the loop level is increased, the successive reductions of the corrections by 23% and 30% suggest

that the four-loop effect will be of order 30% of the three-loop correction, i.e. 0.24 GeV. Hence,

we arrive at a conservative estimate of the higher loop uncertainties in the Higgs mass prediction

of ±0.5 GeV.
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where δ = δβ + δs + δν + · · · . As explained above, δβ,ν may vanish, so that only δs is mandatory;

thus we have chosen to scale δ by a numerical factor following from Eq. (8). Our result shows
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Figure 5: Contours of the shift in the Higgs mass prediction when additional fermions of mass
1 TeV are added to the SM. These fermions contribute ∆b1,2 to the U(1)Y , SU(2)L beta functions,
but do not have significant Yukawa couplings to the Higgs boson or top quark. (a) None of the
additional fermions are colored. The bold dot represents the addition of a single vector-like
lepton doublet. (b) The only additional colored fermions are a single vector-like triplet. The
bold dots represent the addition of 5 + 5̄ (lower) and 5 + 5̄ with a vector-like lepton doublet
(upper).

The most general theory with a single vector-like lepton doublet (L, Lc), with no singlets, is

described by the Lagrangian

L = LSM + mLLc + yLeh†. (13)

The new Yukawa coupling ensures that the heavy lepton is unstable, which is crucial since

otherwise the theory is excluded by limits on the direct detection of DM. The charged and

neutral heavy leptons, LE and LN , will be pair produced at colliders, and each decays to an

electroweak boson and a lepton LE → (h, Z)(e, µ, τ), Wν and LN → W (e, µ, τ), (h, Z)ν.

An alternative possibility is that the vector-like lepton mixes with a neutral Majorana fermion

so that, if the additional fermions are odd under some parity, the lightest neutral mass eigenstate

is stable and, since it is Majorana, evades the DM direct detection limits. Indeed, these states

result if the Higgsinos of the MSSM together with the bino or some other singlet fermion have

masses far below m̃ [15]. In this case, new Yukawa interactions coupling the Higgs boson to

the additional fermions may be present. In this theory, a Higgs mass prediction follows from a

supersymmetric boundary condition on the quartic coupling [16], and depends on the size of the

additional Yukawa interactions.

Adding colored fermions at the weak scale rapidly alters the Higgs mass prediction. For
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The most general theory with a single vector-like lepton doublet (L, Lc), with no singlets, is

described by the Lagrangian

L = LSM + mLLc + yLeh†. (13)

The new Yukawa coupling ensures that the heavy lepton is unstable, which is crucial since

otherwise the theory is excluded by limits on the direct detection of DM. The charged and

neutral heavy leptons, LE and LN , will be pair produced at colliders, and each decays to an

electroweak boson and a lepton LE → (h, Z)(e, µ, τ), Wν and LN → W (e, µ, τ), (h, Z)ν.

An alternative possibility is that the vector-like lepton mixes with a neutral Majorana fermion

so that, if the additional fermions are odd under some parity, the lightest neutral mass eigenstate

is stable and, since it is Majorana, evades the DM direct detection limits. Indeed, these states

result if the Higgsinos of the MSSM together with the bino or some other singlet fermion have

masses far below m̃ [15]. In this case, new Yukawa interactions coupling the Higgs boson to

the additional fermions may be present. In this theory, a Higgs mass prediction follows from a

supersymmetric boundary condition on the quartic coupling [16], and depends on the size of the

additional Yukawa interactions.

Adding colored fermions at the weak scale rapidly alters the Higgs mass prediction. For
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Figure 1: Evolution of the three gauge couplings, ga (a = 1, 2, 3), in the SM. The SU(5)
normalization for the hypercharge gauge coupling is taken.

In the first years after LEP, the first two items above provided a strong motivation for taking

supersymmetry as the leading candidate for understanding the weak scale. However, the absence

of a light Higgs boson is certainly a problem for simple natural theories. Furthermore, together

with experimental bounds on superpartner masses, it pushes these theories into regions where the

superpartner WIMP candidates are also unnatural. This unease with weak scale supersymmetry

is compounded by the lack of any signals of new flavor or CP violation beyond the SM, such

as b → sγ, and by cosmological issues, such as the gravitino problem. Over the years there

were many opportunities for supersymmetry to become manifest, leaving us today with many

reasons to question weak scale supersymmetry. The single remaining success is gauge coupling

unification, and while this is certainly significant, one wonders whether a decrease in the unified

threshold corrections by an order of magnitude might be an unfortunate accident. Even without

supersymmetry, unification can occur, either by enhancing these threshold corrections or by

certain matter surviving below the unified scale. Indeed, the evolution of the gauge couplings

in the SM shows evidence for unification [1], as shown in Figure 1, and precision unification

requires only a small perturbation to this picture.

What, then, is the origin of the weak scale? It has been suggested that the weak scale may

result from anthropic, or environmental, selection [2]. In particular, if the Higgs mass parameter

scans effectively in the multiverse, but not the Yukawa couplings, then the requirement of the

stability of some complex nuclei requires that the weak scale be no more than a factor two

larger than we measure [2, 3]. In this picture, most universes have weak interactions broken at

a very high scale or by QCD dynamics, but they contain no complex nuclei and consequently

2

1
R
∼ 1014±1 GeV?
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In the first years after LEP, the first two items above provided a strong motivation for taking

supersymmetry as the leading candidate for understanding the weak scale. However, the absence

of a light Higgs boson is certainly a problem for simple natural theories. Furthermore, together

with experimental bounds on superpartner masses, it pushes these theories into regions where the

superpartner WIMP candidates are also unnatural. This unease with weak scale supersymmetry

is compounded by the lack of any signals of new flavor or CP violation beyond the SM, such

as b → sγ, and by cosmological issues, such as the gravitino problem. Over the years there

were many opportunities for supersymmetry to become manifest, leaving us today with many

reasons to question weak scale supersymmetry. The single remaining success is gauge coupling

unification, and while this is certainly significant, one wonders whether a decrease in the unified

threshold corrections by an order of magnitude might be an unfortunate accident. Even without

supersymmetry, unification can occur, either by enhancing these threshold corrections or by

certain matter surviving below the unified scale. Indeed, the evolution of the gauge couplings

in the SM shows evidence for unification [1], as shown in Figure 1, and precision unification

requires only a small perturbation to this picture.

What, then, is the origin of the weak scale? It has been suggested that the weak scale may

result from anthropic, or environmental, selection [2]. In particular, if the Higgs mass parameter

scans effectively in the multiverse, but not the Yukawa couplings, then the requirement of the

stability of some complex nuclei requires that the weak scale be no more than a factor two

larger than we measure [2, 3]. In this picture, most universes have weak interactions broken at

a very high scale or by QCD dynamics, but they contain no complex nuclei and consequently
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In the first years after LEP, the first two items above provided a strong motivation for taking

supersymmetry as the leading candidate for understanding the weak scale. However, the absence

of a light Higgs boson is certainly a problem for simple natural theories. Furthermore, together

with experimental bounds on superpartner masses, it pushes these theories into regions where the

superpartner WIMP candidates are also unnatural. This unease with weak scale supersymmetry

is compounded by the lack of any signals of new flavor or CP violation beyond the SM, such

as b → sγ, and by cosmological issues, such as the gravitino problem. Over the years there

were many opportunities for supersymmetry to become manifest, leaving us today with many

reasons to question weak scale supersymmetry. The single remaining success is gauge coupling

unification, and while this is certainly significant, one wonders whether a decrease in the unified

threshold corrections by an order of magnitude might be an unfortunate accident. Even without

supersymmetry, unification can occur, either by enhancing these threshold corrections or by

certain matter surviving below the unified scale. Indeed, the evolution of the gauge couplings

in the SM shows evidence for unification [1], as shown in Figure 1, and precision unification

requires only a small perturbation to this picture.

What, then, is the origin of the weak scale? It has been suggested that the weak scale may

result from anthropic, or environmental, selection [2]. In particular, if the Higgs mass parameter

scans effectively in the multiverse, but not the Yukawa couplings, then the requirement of the

stability of some complex nuclei requires that the weak scale be no more than a factor two

larger than we measure [2, 3]. In this picture, most universes have weak interactions broken at

a very high scale or by QCD dynamics, but they contain no complex nuclei and consequently

2

1
R
∼ 1014±1 GeV?

 Approx U(1) PQ or Higgs from single supermultiplet (>4d)

 Axion DM is strongly motivated -- but Higgsino and wino WIMPs possible
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Figure 6: The Higgs boson mass as a function of λ(Mu) for the SM valid up to Mu, with a wide
range of λ(Mu) in the left panel and an expansion of the region of small λ(Mu) in the right panel.
The values of Mu and αs are fixed at Mu = 1014 GeV and αs(MZ) = 0.1176, respectively, and
the shaded bands represent the variation of the Higgs boson mass for mt = 173.1±1.3 GeV. For
large λ(Mu), the left panel shows that the Higgs boson mass asymptotes to about 190 GeV. The
right panel shows the supersymmetric range of λ(Mu), with a corresponding Higgs boson mass
range of (128 – 141) GeV, as well as the electroweak vacuum stability bound of λ(Mu) >∼ −0.05.

Higgs mass could be raised by about a GeV.3 Higher dimensional theories having a single Higgs

supermultiplet lead to the Higgs mass being near the upper edge of 141 GeV, but brane-localized

kinetic terms lead to uncertainties of about a GeV. Finally, while adding states at the weak scale

beyond those of the SM typically destroys the prediction, there are a few minimal cases that

yield mild perturbations; for example, a single vector-like lepton increases the Higgs boson mass

only by 0.35 GeV.

Are there other special values for the Higgs boson mass that would provide evidence for the

multiverse? In Figure 6 we show the Higgs mass as a function of the quartic coupling at the

unified scale Mu, assuming only that the effective theory below Mu is the SM. The left panel

gives a wide range of λ(Mu), while the right panel expands the region of small λ(Mu). We draw

attention to four special values of the Higgs mass:4

• MH ∼ 190 GeV: results from a very wide range of λ(Mu) >∼ 2, including the case of strong

coupling, λ(Mu) ≈ 2π.

• MH $ 141 GeV: results from the supersymmetric boundary condition λ(Mu) = {g2(Mu)+

g′2(Mu)}/8, as explored in detail in this paper.

3This implies that leptogenesis [29] can be accommodated without affecting the Higgs mass prediction.
4To simplify the presentation, we take the scale at which the quartic coupling takes special values to be Mu.

In fact, depending on the case, this scale could be m̃ or M∗, but we do not expect these scales to differ by many
orders of magnitude.
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The values of Mu and αs are fixed at Mu = 1014 GeV and αs(MZ) = 0.1176, respectively, and
the shaded bands represent the variation of the Higgs boson mass for mt = 173.1±1.3 GeV. For
large λ(Mu), the left panel shows that the Higgs boson mass asymptotes to about 190 GeV. The
right panel shows the supersymmetric range of λ(Mu), with a corresponding Higgs boson mass
range of (128 – 141) GeV, as well as the electroweak vacuum stability bound of λ(Mu) >∼ −0.05.

Higgs mass could be raised by about a GeV.3 Higher dimensional theories having a single Higgs

supermultiplet lead to the Higgs mass being near the upper edge of 141 GeV, but brane-localized

kinetic terms lead to uncertainties of about a GeV. Finally, while adding states at the weak scale

beyond those of the SM typically destroys the prediction, there are a few minimal cases that

yield mild perturbations; for example, a single vector-like lepton increases the Higgs boson mass

only by 0.35 GeV.

Are there other special values for the Higgs boson mass that would provide evidence for the

multiverse? In Figure 6 we show the Higgs mass as a function of the quartic coupling at the

unified scale Mu, assuming only that the effective theory below Mu is the SM. The left panel

gives a wide range of λ(Mu), while the right panel expands the region of small λ(Mu). We draw

attention to four special values of the Higgs mass:4

• MH ∼ 190 GeV: results from a very wide range of λ(Mu) >∼ 2, including the case of strong

coupling, λ(Mu) ≈ 2π.

• MH $ 141 GeV: results from the supersymmetric boundary condition λ(Mu) = {g2(Mu)+

g′2(Mu)}/8, as explored in detail in this paper.

3This implies that leptogenesis [29] can be accommodated without affecting the Higgs mass prediction.
4To simplify the presentation, we take the scale at which the quartic coupling takes special values to be Mu.

In fact, depending on the case, this scale could be m̃ or M∗, but we do not expect these scales to differ by many
orders of magnitude.
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The values of Mu and αs are fixed at Mu = 1014 GeV and αs(MZ) = 0.1176, respectively, and
the shaded bands represent the variation of the Higgs boson mass for mt = 173.1±1.3 GeV. For
large λ(Mu), the left panel shows that the Higgs boson mass asymptotes to about 190 GeV. The
right panel shows the supersymmetric range of λ(Mu), with a corresponding Higgs boson mass
range of (128 – 141) GeV, as well as the electroweak vacuum stability bound of λ(Mu) >∼ −0.05.

Higgs mass could be raised by about a GeV.3 Higher dimensional theories having a single Higgs

supermultiplet lead to the Higgs mass being near the upper edge of 141 GeV, but brane-localized

kinetic terms lead to uncertainties of about a GeV. Finally, while adding states at the weak scale

beyond those of the SM typically destroys the prediction, there are a few minimal cases that

yield mild perturbations; for example, a single vector-like lepton increases the Higgs boson mass

only by 0.35 GeV.

Are there other special values for the Higgs boson mass that would provide evidence for the

multiverse? In Figure 6 we show the Higgs mass as a function of the quartic coupling at the

unified scale Mu, assuming only that the effective theory below Mu is the SM. The left panel

gives a wide range of λ(Mu), while the right panel expands the region of small λ(Mu). We draw

attention to four special values of the Higgs mass:4

• MH ∼ 190 GeV: results from a very wide range of λ(Mu) >∼ 2, including the case of strong

coupling, λ(Mu) ≈ 2π.

• MH $ 141 GeV: results from the supersymmetric boundary condition λ(Mu) = {g2(Mu)+

g′2(Mu)}/8, as explored in detail in this paper.

3This implies that leptogenesis [29] can be accommodated without affecting the Higgs mass prediction.
4To simplify the presentation, we take the scale at which the quartic coupling takes special values to be Mu.

In fact, depending on the case, this scale could be m̃ or M∗, but we do not expect these scales to differ by many
orders of magnitude.
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Figure 6: The Higgs boson mass as a function of λ(Mu) for the SM valid up to Mu, with a wide
range of λ(Mu) in the left panel and an expansion of the region of small λ(Mu) in the right panel.
The values of Mu and αs are fixed at Mu = 1014 GeV and αs(MZ) = 0.1176, respectively, and
the shaded bands represent the variation of the Higgs boson mass for mt = 173.1±1.3 GeV. For
large λ(Mu), the left panel shows that the Higgs boson mass asymptotes to about 190 GeV. The
right panel shows the supersymmetric range of λ(Mu), with a corresponding Higgs boson mass
range of (128 – 141) GeV, as well as the electroweak vacuum stability bound of λ(Mu) >∼ −0.05.

Higgs mass could be raised by about a GeV.3 Higher dimensional theories having a single Higgs

supermultiplet lead to the Higgs mass being near the upper edge of 141 GeV, but brane-localized

kinetic terms lead to uncertainties of about a GeV. Finally, while adding states at the weak scale

beyond those of the SM typically destroys the prediction, there are a few minimal cases that

yield mild perturbations; for example, a single vector-like lepton increases the Higgs boson mass

only by 0.35 GeV.

Are there other special values for the Higgs boson mass that would provide evidence for the

multiverse? In Figure 6 we show the Higgs mass as a function of the quartic coupling at the

unified scale Mu, assuming only that the effective theory below Mu is the SM. The left panel

gives a wide range of λ(Mu), while the right panel expands the region of small λ(Mu). We draw

attention to four special values of the Higgs mass:4

• MH ∼ 190 GeV: results from a very wide range of λ(Mu) >∼ 2, including the case of strong

coupling, λ(Mu) ≈ 2π.

• MH $ 141 GeV: results from the supersymmetric boundary condition λ(Mu) = {g2(Mu)+

g′2(Mu)}/8, as explored in detail in this paper.

3This implies that leptogenesis [29] can be accommodated without affecting the Higgs mass prediction.
4To simplify the presentation, we take the scale at which the quartic coupling takes special values to be Mu.

In fact, depending on the case, this scale could be m̃ or M∗, but we do not expect these scales to differ by many
orders of magnitude.
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right panel shows the supersymmetric range of λ(Mu), with a corresponding Higgs boson mass
range of (128 – 141) GeV, as well as the electroweak vacuum stability bound of λ(Mu) >∼ −0.05.

Higgs mass could be raised by about a GeV.3 Higher dimensional theories having a single Higgs

supermultiplet lead to the Higgs mass being near the upper edge of 141 GeV, but brane-localized

kinetic terms lead to uncertainties of about a GeV. Finally, while adding states at the weak scale

beyond those of the SM typically destroys the prediction, there are a few minimal cases that

yield mild perturbations; for example, a single vector-like lepton increases the Higgs boson mass

only by 0.35 GeV.

Are there other special values for the Higgs boson mass that would provide evidence for the

multiverse? In Figure 6 we show the Higgs mass as a function of the quartic coupling at the

unified scale Mu, assuming only that the effective theory below Mu is the SM. The left panel

gives a wide range of λ(Mu), while the right panel expands the region of small λ(Mu). We draw

attention to four special values of the Higgs mass:4

• MH ∼ 190 GeV: results from a very wide range of λ(Mu) >∼ 2, including the case of strong

coupling, λ(Mu) ≈ 2π.

• MH $ 141 GeV: results from the supersymmetric boundary condition λ(Mu) = {g2(Mu)+

g′2(Mu)}/8, as explored in detail in this paper.

3This implies that leptogenesis [29] can be accommodated without affecting the Higgs mass prediction.
4To simplify the presentation, we take the scale at which the quartic coupling takes special values to be Mu.

In fact, depending on the case, this scale could be m̃ or M∗, but we do not expect these scales to differ by many
orders of magnitude.
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Higgs Mass Prediction SM + h̃/s̃

Figure 1: ..... SM (solid), h̃/s̃ (dashed), wino (dotted). δ ≡
√

(g2
1 − ḡ2)2 + (g2

2 − ḡ2)2 + (g2
3 − ḡ2)2/ḡ2,

where ḡ2 ≡ (g2
1 + g2

2 + g2
3)/3.

higher level of precision [10, 9]. In this paper, we study a new version of this model that emerges
from the supersymmetric framework described above and keeps the successful features of gauge coupling
unification and WIMP dark matter. Supersymmetry plays a key role since it leads to a high precision
prediction for the Higgs boson mass, and it restricts the form of the Yukawa couplings to the new states.

The Higgsino mass, µ, must transform non-trivially under some approximate symmetry G and, since
G is not an R symmetry, the Higgs-boson mass mixing parameter, Bµ, must also be suppressed: µ ∼ εm̃
and Bµ ∼ εm̃2, where ε is a small symmetry breaking parameter. This implies that environmental
selection on the Higgs mass matrix to obtain a low weak scale leads to the light Higgs boson being
h ∼ hu + εhd or h ∼ hd + εhu, with ε ∼ mDM/m̃ ∼ O(10−12 – 10−11). The heavy top quark prefers the
former case, so that quark and charged lepton masses arise from

L ∼ [QUHu]θ2 +
1

M2
∗
[(QD + LE)H†

uX†]θ4 + h.c., (1)

where Q, U,D, L,E are the quark and lepton superfields, Hu a Higgs superfield and X a superfield that
leads to supersymmetry breaking, 〈X〉 = θ2FX with FX ∼ m̃M∗. Hence the b quark and τ lepton masses
are moderately suppressed relative to the t quark mass by supersymmetry breaking, mb,τ/mt ∼ m̃/M∗.

As in the MSSM, supersymmetry imposes a boundary condition on the Higgs quartic coupling, but
with two important differences. First, the boundary condition applies near the unified scale rather than
near the weak scale and, as we will see in section 3, this has crucial consequences for the prediction of the
Higgs boson mass. Secondly, since tanβ ∼ 1/ε, the boundary condition becomes independent of tanβ

λ(m̃) =
g2(m̃) + g′2(m̃)

8
(1 + δ), (2)

where δ results from threshold corrections, for example, from integrating out superpartners such as the
top squarks.

Since s̃ is lighter than m̃, the superfield S must transform non-trivially under G. This removes
interactions that transform linearly in S, such as [SX†X]θ4 . The G charges must allow [SHuHd]θ2 , since
otherwise s̃ would not interact in the low energy theory, preventing acceptable dark matter. Hence the
theory below m̃ is described by

L = LSM(q, u, d, l, e, h) +
{

µh̃uh̃d +
m

2
s̃2 + yh̃ds̃h + h.c.

}
, (3)

where we drop higher dimension interactions and dimensionless interactions suppressed by powers of ε.
Supersymmetry together with G removes the gauge invariant interaction h̃us̃h†, so that there are just
three new parameters: µ, m and y. Since the quartic coupling is predicted in Eq. (2), the theory has just
two more free parameters than the SM.

In the next section we present a particular realization of our framework, with G = Z3. In section 3
we present our Higgs mass prediction, finding that it is extremely insensitive to y for y(m̃) <∼ 0.4. The
constraints on the parameter space imposed by the requirement of dark matter are studied in section 4. In
section 5 we study experimental signals from hadron colliders and from the direct and indirect detection
of dark matter. .....

3

 Three new parameters

 Supersymmetric boundary condition

δmt = ±1.3 GeV

0.35 GeV above SM

λ(m̃) =
g2(m̃) + g′2(m̃)

8
(1 + δ(m̃))
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higher level of precision [10, 9]. In this paper, we study a new version of this model that emerges
from the supersymmetric framework described above and keeps the successful features of gauge coupling
unification and WIMP dark matter. Supersymmetry plays a key role since it leads to a high precision
prediction for the Higgs boson mass, and it restricts the form of the Yukawa couplings to the new states.

The Higgsino mass, µ, must transform non-trivially under some approximate symmetry G and, since
G is not an R symmetry, the Higgs-boson mass mixing parameter, Bµ, must also be suppressed: µ ∼ εm̃
and Bµ ∼ εm̃2, where ε is a small symmetry breaking parameter. This implies that environmental
selection on the Higgs mass matrix to obtain a low weak scale leads to the light Higgs boson being
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former case, so that quark and charged lepton masses arise from
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where Q, U,D, L,E are the quark and lepton superfields, Hu a Higgs superfield and X a superfield that
leads to supersymmetry breaking, 〈X〉 = θ2FX with FX ∼ m̃M∗. Hence the b quark and τ lepton masses
are moderately suppressed relative to the t quark mass by supersymmetry breaking, mb,τ/mt ∼ m̃/M∗.

As in the MSSM, supersymmetry imposes a boundary condition on the Higgs quartic coupling, but
with two important differences. First, the boundary condition applies near the unified scale rather than
near the weak scale and, as we will see in section 3, this has crucial consequences for the prediction of the
Higgs boson mass. Secondly, since tanβ ∼ 1/ε, the boundary condition becomes independent of tanβ
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where δ results from threshold corrections, for example, from integrating out superpartners such as the
top squarks.

Since s̃ is lighter than m̃, the superfield S must transform non-trivially under G. This removes
interactions that transform linearly in S, such as [SX†X]θ4 . The G charges must allow [SHuHd]θ2 , since
otherwise s̃ would not interact in the low energy theory, preventing acceptable dark matter. Hence the
theory below m̃ is described by

L = LSM(q, u, d, l, e, h) +
{

µh̃uh̃d +
m

2
s̃2 + yh̃ds̃h + h.c.

}
, (3)

where we drop higher dimension interactions and dimensionless interactions suppressed by powers of ε.
Supersymmetry together with G removes the gauge invariant interaction h̃us̃h†, so that there are just
three new parameters: µ, m and y. Since the quartic coupling is predicted in Eq. (2), the theory has just
two more free parameters than the SM.

In the next section we present a particular realization of our framework, with G = Z3. In section 3
we present our Higgs mass prediction, finding that it is extremely insensitive to y for y(m̃) <∼ 0.4. The
constraints on the parameter space imposed by the requirement of dark matter are studied in section 4. In
section 5 we study experimental signals from hadron colliders and from the direct and indirect detection
of dark matter. .....
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 Supersymmetric boundary condition
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m̃ = 1014±1 GeV
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Dark Matter:  SM + w̃ :



mw̃ = (2.7− 3)TeV

Direct Detection

mw̃ = (2.7− 3)TeV

 Indirect Detection
w̃w̃ → γγ from the galactic center

Sommerfeld boost ≈ 102



Selection of Dark Matter
Tegmark, Aguirre, Rees, Wilczek 

 astro-ph/0511774   







As DM mass increases we hit boundary where galactic disks do not fragment

In absence of DM galactic size perturbations removed by Silk damping

Multi-parameter scan:  unknown


