
SUSY Breaking in N = 2 QFT

Planck 2010

Matthew Buican

CERN PH-TH

I. Antoniadis and M.B., 1005.3012

June 2, 2010

1



Overview

• Motivation for studying N = 2 SUSY breaking

• A general tool: the supercurrent multiplet

• Review of the Ferrara-Zumino (FZ) multiplet

• Generalization to N = 2 for theories with (spontaneously bro-

ken) SU(2)R

• RG flow of anomaly multiplet and SUSY breaking
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N = 2 SUSY breaking motivation I

• Better behaved SUSY breaking theories (see post SW litera-

ture) where we can work at strong coupling?

• Simple dynamical models? N = 2 ISS, metastable theories?

• Could be relevant for describing the hidden sector where SUSY

is broken (see D-brane constructions, etc.)

• Interesting IR signatures?
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N = 2 SUSY breaking historical interlude

• First example [P. Fayet, Nucl. Phys. B113 (1976)]

L =
∫
d2θ(

1

8
TrW2 +

1

4
W ′2 +

1√
2

(2gΦ̃aN
a
bΦ

b − g′N ′Φ̃aΦa) +
f√
2
N ′)

+h.c.+
∫
d4θ(Φ̄ae

2gV ab−g
′V ′δabΦb + Φ̃ae

−2gV ab+g′V ′δab ¯̃Φ
b

+N̄ie
2gV ijNj + N̄ ′N ′) (1)

• f is put in by hand and breaks SUSY and SU(2)R.

• This model was studied in the asymptotically free regime clas-

sically. It has some quantum peculiarities.
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• Similar example but with more matter studied in the strongly

coupled (weak SUSY breaking) regime by [Arai et. al., 0708.0668]

• Other known examples are variations on this model... Magnetic

FI terms with non-trivial prepotential and partial breaking after

SW [I. Antoniadis, H. Partouche, and T. Taylor, 9512006]
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N = 2 SUSY breaking motivation II

• Dynamical models?

• N = 2 constraining, as hinted at by the few SUSY breaking

examples that have been engineered. Why?

• We can give some broad answers to these questions by group-

ing theories by their symmetries and studying the corresponding

supercurrent multiplets.

• We will study theories with SU(2)R at most spontaneously

broken in addition to N = 2.
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• Claim: Such theories will not have SUSY breaking vacua as

long as the IR is a weakly coupled soup of goldstinos and Gold-

stone bosons.

• Our reasoning will not rest on SW-type solutions (which are

only valid for small SUSY breaking anyway since they ignore

higher-derivative corrections).
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Intro to the N = 1 FZ supercurrent multiplet

• Know from SUSY algebra that supercurrent, Sµα, and stress
tensor, Tµν, should be grouped together with R-current, jµR, i.e.

{Q̄α̇, Sµα} ∼ σναα̇Tµν, [Qα, j
µ
R] ∼ Sµα, (2)

up to Schwinger terms.

• This notion was made more precise by Ferrara and Zumino
(FZ). For a superconformal theory

D̄α̇Jαα̇ = 0 (3)

• Solving this equation, they found

Jµ = jRµ + θαSµα + θ̄α̇S̄
α̇
µ + (θσν θ̄)(Tµν −

1

4
ενµρσ∂

[ρjσ]) + ... (4)
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• 8 bosonic and 8 fermionic components.

• Here jRµ is the current for the symmetry that assigns charge

+2/3 to chiral superfields, Φ.
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Intro to the N = 1 FZ supercurrent multiplet (cont...)

• When the superconformal symmetry is broken, we must add

an appropriate representation of SUSY to the RHS of the con-

servation equation, i.e., an anomaly. FZ chose

D̄α̇Jαα̇ = DαX (5)

where X is chiral, i.e., D̄α̇X = 0.

• The solution to this equation is

Jµ = jRµ + θα(Sµα +
1

3
(σµσ̄

ρSρ)α) + θ̄α̇(S̄α̇µ +
1

3
εα̇β̇(S̄ρσ̄

ρσµ)β̇)

+(θσν θ̄)(Tµν −
2

3
ηµνT −

1

4
ενµρσ∂

[ρjσ]) +
i

2
θ2∂µx−

i

2
θ2∂µx̄

(6)
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and

X = x+
√

2θα(

√
2

3
σ
µ
αα̇S̄

α̇
µ) + θ2(

2

3
T + i∂µj

µ) (7)

• 12 bosonic and 12 fermionic components in the multiplet.

• Solutions not unique: (Jµ + i∂µ(Y − Ȳ ), X − 1
2D̄

2Ȳ ). These
solutions are related by improvement terms for the (conserved)
component currents.

• The existence of this multiplet is subject to several obstruc-
tions, but it is well-defined for a large class of theories [Z.

Komargodski and N. Seiberg, 0904.1159, 1002.2228].

• A simple N = 2 generalization of the FZ multiplet will be valid
for the theories we consider.
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• There are other possible embeddings of the supercurrent mul-

tiplet, e.g., when the theory has an R-symmetry can define

D̄αRαα̇ = χα. If the theory also has an FZ multiplet, and one can

solve X = −1
2D̄

2U , then one can write Rαα̇ = Jαα̇ + [Dα, D̄α̇]U .

Also other options Z. Komargodski and N. Seiberg 1002.2228, S.

Kuzenko 1002.4932.
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The FZ supercurrent multiplet in the UV

• Example

S =
∫
d4θK(Φ, Φ̄) + (

∫
d2θW (Φ) + h.c.) (8)

• Have

Jαα̇ = 2DαΦ · D̄α̇Φ̄−
2

3
[Dα, D̄α̇]K (9)

and

X = 4W −
1

3
D̄2K (10)

• Note if K = ΦΦ̄ and W = Φ3, then X = 0 and we have a

(classically) conformal theory.
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The FZ supercurrent multiplet along the RG flow

• Supercharge commutators are well-defined along the RG flow

even if SUSY is spontaneously broken.

• Therefore, the X operator satisfies chiral commutation rela-

tions along the full RG flow:

[ξQ, x] ∼ ξψ, [ξ̄Q̄, x] = 0

[ξQ, ψα] ∼ ξαF, [ξ̄Q̄, ψα] ∼ ξ̄σ̄µ∂µx (11)

[ξQ, F ] = 0, [ξ̄Q̄, F ] ∼ ∂µψσµξ̄ (12)

and we have a chiral superfield even in the IR.
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SUSY breaking and the FZ supercurrent multiplet in the

deep IR

• When SUSY is broken, the supercurrent flows to its spin half

component, i.e., the goldstino

Sµα ∼ fσ
µ
αα̇Ḡ

α̇ (13)

• Therefore, one can identify a universal goldstino superfield [Z.

Komargodski and N. Seiberg, 0907.2441]

X = x+
√

2θαGα + θ2F (14)

• In general, SUSY partner of goldstino is not massless. Then,

at leading order, the corresponding operator can create a two
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goldstino state. The norrmalization of the operator is fixed by

the SUSY algebra, and one finds[Z. Komargodski and N. Seiberg,

0907.2441]

XIR =
G2

2F
+
√

2θαGα + θ2F (15)

• With

X2
IR = 0 (16)
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X and the low energy effective action

• At low energies, can construct an Akulov-Volkov Lagrangian

L =
∫
d4θXIRX̄IR + (

∫
d2θfXIR + h.c.) + ... (17)

• One consistency condition on the above action is that the

divergence of the FZ multiplet of the above theory matches the

RG evolved FZ multiplet of the original theory, i.e.

D̄α̇JIRαα̇ = fDαXIR (18)

• This must be the case for the theory to be a consistent low

energy version of the original theory.
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Summary of N = 1

• We start in the UV with some theory, say massive N = 1

SQCD a la ISS that has an FZ multiplet

D̄α̇Jαα̇ ∼ Dα(cW2) + ... (19)

• And go to the IR where we find a consistent low energy action

of the type above

L =
∫
d4θXIRX̄IR + (

∫
d2θfXIR + h.c.) + ... (20)

• With possible additional particles (goldstone bosons, etc.).

• Question: Is there an analog in N = 2 QFT?
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Generalizing to N = 2: SCFT warmup

• The supercurrent structure of N = 2 QFT is significantly

more complicated. At the superconformal level, we package the

N = 2 supercurrent in a dimension two field that satisfies [M. F.

Sohnius, P. Lett. B 81, 1979]

D〈ij〉J = 0 (21)

where i, j are SU(2)R indices and D〈ij〉 is the SU(2)R spin one

differential operator.

• This constraint immediately implies the following interesting
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spectrum of component operators

SU(2)R Dim

J 1 2

J
〈i〉
α 2 5/2

Jαβ 1 3

J
〈i〉
〈j〉µ 3 3

Jµ 1 3

J
〈i〉
µα 2 7/2

Tµν 1 4

(22)

• Standard conservation, symmetrization, and trace identities
satisfied.

• Unlike the N = 1 superconformal case, the N = 2 case comes
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with more degrees of freedom than just the supercurrents, U(2)R
currents, and Tµν. Have 24 bosonic and 24 fermionic compo-

nents.
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Reformulation in terms of N = 1 superspace

• We can redefine the supercurrent as follows

Ĵ ≡ J |, Jα ≡ (D
〈2〉
α J )|, Jαα̇ =

(
−

1

3

[
D
〈1〉
α , D̄〈1〉α̇

]
+
[
D
〈2〉
α , D̄〈2〉α̇

])
J |

(23)

• We can then rewrite the above N = 2 conservation equation

in N = 1 superspace as follows

D̄2Ĵ = D2Ĵ = 0, DαJα = 0, D̄2Jα = 0, D̄α̇Jαα̇ = 0, (24)

• Which we can solve as follows

Ĵ = J + θαJ
〈1〉
α + θ̄α̇J̄

α̇
〈1〉+ θσµθ̄(−

1

2
Jµ + J

〈1〉
〈1〉µ) +O(θ2θ̄, θ̄2θ)
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Jα = J
〈2〉
α + θβJβα + σ

µ
αα̇θ̄

α̇J
〈2〉
〈1〉µ + θσµθ̄(−J〈2〉µα +

2

3
iσ β
µνα ∂

νJ
〈2〉
β )

+ O(θ2θ̄, θ̄2θ)

Jµ =
1

3
Jµ +

4

3
J
〈1〉
〈1〉µ + θαJ

〈1〉
µα + θ̄α̇J

α̇
〈1〉µ + θσν θ̄

(
2Tνµ −

1

4
ενµρσ∂

[ρjσ]
)

+ O(θ2θ̄, θ̄2θ) (25)
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Adding the N = 2 anomaly

• We choose to consider theories with an N = 2 linear anomaly

D〈ij〉J = 3L〈ij〉 (26)

This is a field satisfying

(L〈ij〉)† = ε〈ik〉ε〈jl〉L
〈kl〉, L〈ij〉 = L〈ji〉, D

(〈i〉
α L〈jk〉) = D̄

(〈i〉
α̇ L

〈jk〉) = 0

(27)
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• The corresponding spectrum of operators is

SU(2)R Dim

L〈ij〉 3 3

L
〈i〉
α 2 7/2

L 1 4

Lµ 1 4

(28)

• So we see that theories described by these anomaly multiplets

will have among other conserved currents a conserved SU(2)R
and a conserved central charge current.

• Therefore these multiplets do not describe breaking by explicit

field independent FI terms. But, theories where such terms are

field dependent are covered.
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The N = 2 anomaly in N = 1 superspace

• In N = 1 language these constraints amount to

D̄α̇X = 0, D2L = D̄2L = 0 (29)

• The component conservation equations then become

D̄2Ĵ = 3X, DαJα = −3iL, D̄2Jα = 0, D̄α̇Jαα̇ = DαX (30)

• We can again solve these equations

Jα = J
〈2〉
α + θβ

(
Jβα −

3

2
iεβα`

)
+ σ

µ
αα̇θ̄

α̇J
〈2〉
〈1〉µ + θσµθ̄(−J〈2〉µα

−
1

2
(σµσ̄

ρJ
〈2〉
ρ )α +

2

3
iσ β
µνα ∂

νJ
〈2〉
β ) + 2θ2σ

µ
αα̇J̄

α̇
〈2〉µ (31)
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+ θ2θ̄α̇

[
3

2
σµα̇α

(
−

1

2
∂µ`+ i`µ

)
+

i

2
σ
µα̇
β ∂µJ

β
α

]
+O(θ̄2θ)

Jµ = jN=1
µ + θα

(
J
〈1〉
µα +

1

3
(σµσ̄

ρJ
〈1〉
ρ )α

)
+ θ̄α̇

(
J̄ α̇〈1〉µ +

1

3
εα̇β̇(J̄〈1〉ρσ̄

ρσµ)β̇

)
+ θσν θ̄

(
2Tνµ −

2

3
ηµνT −

1

4
ενµρσ∂

[ρj
σ]
N=1

)
+

i

2
θ2∂µx̄−

i

2
θ̄2∂µx

+ O(θ2θ̄, θ̄2θ)

• And

X = x+ θα
(

2
3σ

µ
αα̇J̄

α̇
〈1〉µ

)
+ θ2

(
2
3T + i∂µj

µ
N=1

)
+O(θθ̄),

L = `− i
2θ
α
(

2
3σ

µ
αα̇J̄

α̇
〈2〉µ

)
+ i

2θ̄α̇

(
2
3σ

µα̇
α J

〈2〉α
µ

)
+ θσµθ̄`µ

+O(θ2θ̄, θ̄2θ). (32)
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• Improvement terms

J −
3

2
(W + W̄ ), L〈ij〉 −

1

2
D〈ij〉W (33)

where W is a reduced chiral superfield.

• We then find

δJ
〈j〉
〈i〉µ = 0, δ`µ = 2

√
2∂νFµν, δJ

〈i〉
µα = 2iσ β

µνα∂
νλ
〈i〉
β ,

δTµν = −(∂ν∂µ − ηµν)(φ+ φ̄) (34)
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Some simple example theories

• A theory of N massive hypermultiplets (considered by Sohnius)

L =
∫
d4θ

(
Q̄iQi + Q̃i ¯̃Qi

)
+

(∫
d2θ

1√
2
MiQiQ̃

i + h.c.

)
(35)

• Using the superconformal U(2)R charges of the hypermulti-
plets, we can construct the lowest component supercurrent op-
erator

Ĵ =
1

2

∑
i

(
QiQ̄

i + ¯̃QiQ̃
i
)
. (36)

• We then find

X = 2
√

2
3

∑
iMiQiQ̃

i,
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L = −
√

2
3
∑
iMi

(
QiQ̄

i − ¯̃QiQ̃
i
)
. (37)

• SUSY is clearly unbroken.

• In the superconformal case the masses vanish and X = L = 0.
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Some simple example theories (cont...)

• Another simple example: N = 2 gauge field with a non-trivial
prepotential

L =
∫
d2θ1d

2θ2 F(W ) + h.c. (38)

where

F(W ) =
1

4
W2 + ... (39)

• We find

Ĵ = −Φ∂Φ̄F̄ − Φ̄∂ΦF −
(
F̃ + ¯̃F

)
(40)

• With the local shift term defined as follows

∂ΦF̃ ≡ ∂ΦF −Φ∂2
ΦF . (41)
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• The anomaly multiplet is then

X = −1
3

((
∂ΦF −Φ∂2

ΦF
)
D̄2Φ̄ + 2Φ∂3

ΦF W2 + D̄2 ¯̃F
)

L =
√

2
3

(
D̄α̇

[
W̄ α̇

(
∂Φ̄F̄ − Φ̄∂2

Φ̄
F̄
)]

+Dα
[
Wα

(
∂ΦF −Φ∂2

ΦF
)])
(42)

• SUSY is unbroken.

• When the theory has a free prepotential, we find X = L = 0.
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Some not so simple theories

• N = 2 SYM

D〈ij〉J =
c

2
tr(D〈ij〉W2 − D̄〈ij〉W̄2) (43)

where c = 8πiβ.

• And various other cousin theories with arbitrary gauge group

and massive hypermultiplet flavors.
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SUSY breaking

• First, assume SU(2)R is not spontaneously broken.

• In the deep IR we have

S
µ〈i〉
α =

√
2fσµαα̇Ḡ

〈i〉α̇ + ... (44)

• So from above we see that

XIR = xIR +
√

2θαG〈1〉α + θ2F +O(θθ̄)

LIR = `IR − i√
2
θαG〈2〉α + i√

2
θ̄α̇Ḡ

〈2〉α̇ + θσµθ̄`IRµ +O(θ2θ̄, θ̄2θ).(45)

i.e., we have embedded the Goldstinos.

• However, xIR and `IR must be composite.
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• Up to zero derivatives, must have

XIR =
G〈1〉G〈1〉

2F + Ḡ〈2〉Ḡ〈2〉

2F̄
+
√

2θG〈1〉+ θ2F +O(∂µ),

LIR = −i
G〈1〉G〈2〉

2F + iḠ
〈1〉Ḡ〈2〉

2F̄
− i√

2
θG〈2〉+ i√

2
θ̄Ḡ〈2〉+O(∂µ)(46)

• However, find a contradiction when imposing proper transfor-

mations under the full SUSY algebra.

•
[
ξ̄Q̄〈1〉, xIR

]
= 0 implies:

xIR =
G〈1〉G〈1〉

2F
+
Ḡ〈2〉Ḡ〈2〉

2F̄
−

i

2|F |2
(
G〈1〉σ

µḠ〈1〉+G〈2〉σ
µḠ〈2〉

)
·
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· ∂µ

(
Ḡ〈2〉Ḡ〈2〉

F̄

)
+ g

µ
(0)α̇(G〈i〉, Ḡ

〈2〉)∂µ

(
Ḡ〈1〉α̇

F̄

)
+ g(1)(G〈i〉, Ḡ

〈2〉) +O(∂2), (47)

• On the other hand,
[
ξQ〈2〉, xIR

]
= 0 implies

xIR =
G〈1〉G〈1〉

2F
+
Ḡ〈2〉Ḡ〈2〉

2F̄
+

i

2|F |2
(
G〈1〉σ

µḠ〈1〉+G〈2〉σ
µḠ〈2〉

)
·

· ∂µ

(
G〈1〉G〈1〉

F

)
+ g̃α(0)µ(G〈1〉, Ḡ

〈i〉)∂µ
(
G〈2〉α
F

)
+ g̃(1)(G〈1〉, Ḡ

〈i〉) +O(∂2) (48)

• These two forms contradict each other and so SUSY cannot

be broken in this case.
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The IR effective action

• Suppose that SU(2)R is spontaneously broken. Then xIR and
`IR can contain the corresponding R-axions.

• Assuming that the theory is weakly coupled (after integrating
out strong dynamics), we must have∫

d4θ(XIRX̄IR − 2L2
IR) + (

∫
d2θfXIR + h.c.) + ... (49)

where the ellipses contain weak interactions and higher-order
corrections.

• Can write a supercurrent for this theory and compute the IR
anomaly. We find

D̄2Ĵ = 8fXIR + 2D̄2(L2
IR),
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DαJα = 2iDαLIRDαXIR − 8ifLIR,

D̄2Jα = −2iD̄2 (LIRDαXIR) ,

D̄α̇Jαα̇ = 8
3Dα

(
fXIR − D̄α̇LIRD̄α̇LIR

)
+2D̄2Dα

(
L2
IR

)
+ 2D̄α̇DαXIRD̄

α̇X̄IR. (50)

• No shift in J gives back the (RG evolved) anomaly of the

original theory. This is a contradiction, and so SUSY cannot be

broken!

• Consequence: No SUSY breaking in this class of theories

(N = 2 SYM, etc.).
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Conclusions and open problems

• Using very general techniques we have understood that a large

class of theories cannot break N = 2 SUSY.

• This statement is clearly related to the fact that they have an

underlying conserved SU(2)R symmetry.

• What about theories that do not have a conserved SU(2)R?

• Relation to recent hypermultiplet no-go theorems? [Jacot and

Scrucca].
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