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Flavour and String Theory

e Is it possible to explain the matter content and basic flavour
patterns of the Standard Model in an elegant way from string theory?

e Is there an underlying unified symmetry behind all the interactions?
e String theory constructions are more constrained than field theory

e Would like to base the construction on a GUT model

e It is generally very difficult to calculate quantities such as Yukawa
couplings even up to order 1 factors

e Perturbative type II string theory does not allow for a top Yukawa
coupling

e F-theory GUTs present partial solutions to these 2 key problems



F-theory GUTs

Beasley, Heckman, Vafa; Donagi, Wijnholt; ... '08-...
e F-theory describes strongly-coupled solutions of type IIB string theory.

e It is based on compactifying from 12 dimensions to 4 dimensions on an
8-dimensional Calabi-Yau manifolds with singularities.

e The geometry can be chosen such that there is an SU(5) gauge field
that lives in four dimensional space time and on a four-dimensional
surface S inside the CY

S
I To the CY bulk .

e Can decouple CY bulk as an expansion in GUT/Planck scale.

e Calculability 1T



F-theory GUTs

e In S there are curves on which the gauge group is enhanced

e In S there are points on which the gauge group is enhanced further
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e Top Yukawa: Uniqueness 1T



The point of ES

Heckman, Tavanfar,
Vafa. 08

e The highest possible enhancement is to E8
Point of E8
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e Interactions can be studied by just looking at a single point in the CY

e Uniqueness 1T

e Calculabilty TTTTTTT1TT 1T



A closer look at the Point of E8

e The 4-dimensional gauge interactions are Esx — SU(5) x U(1)*
e The U(1) charges | +ta+1t3+t4+1t5=0.

e The U(1)s become massive through Green-Schwartz mechanism and
leave behind Global Symmetries which the matter is charged under
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Interactions are required to be neutral under the full E8, e.g. Yukawas:

51101102 = —t1 — t2 + t1 + t2 5152103 = t1 + t2 + t3 + t4 + ts



Quark flavour in E8

e Consider the point of E8 and use the U(1) symmetries to generate
flavour structure a la Froggat-Nielsen.

e Take each generation to come from a different curve.

e Use U(1)s to forbid Yukawas for all but the top generation.

e Generate corrections through higher dimension operators involving the
singlets after giving them a vev.
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Point of E8 model building

e Model build on a point!

e Must specify 2 things that would be determined by a global embedding:

1) The monodromy action: some t's can be identified

2) The multiplicity/chirality on each curve (Flux content)

e Once these are specified the theory includes all operators that are
allowed by the U(1) selection rules - follows from point intersection.

. Note the difference to field theory models:

1) U(1) fields already included in the constructions

2) Frogatt-Nielsen fields (GUT singlets) already included
3) Matter charges are fixed



The candidate model

Field Curve Charges/Orbit Chiral interactions
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e If relax some constraints can find more models King, Leontaris, Ross ‘10



The masses and mixing

e We have 3 real parameters that are the 3 vevs which we take as
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e The quark sector physics:
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my ~6x107° TeV | m,~2x 107" TeV, m; ~ 0.1 TeV,
Mg ~4x 1072 TeV |, my ~5x 107 TeV | my, ~ 6 x 1074 TeV .

e The neutrino sector physics: (PMNS anarchic, random example shown)
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Summary

e F-theory GUTs are a promising arena for flavour physics: top Yukawa,
GUT, locality.

e It is possible to explain the flavour structure observed in the SM
through a simple and elegant model based on a type of E8 unification

Point of E8

e Global issues still unrealised/unresolved: matter spectrum, moduli
stabilisation, supersymmetry breaking...



Working the U(1)s

e The U(1) symmetries should not just be used for flavour:
e Forbid a mu term in the superpotential
—» Naturally generate via Giudice-Masiero /(14(9 Y5 4. 50,
e Forbid dim 4 and dim 5 proton decay operators
e Forbid neutrino superpotential Dirac masses *

e Forbid neutrino superpotential Majorana masses *

— Naturally generated via operator Arkani-Hamed et al. ‘00
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e Unable to forbid the operator 55354, —» R-parity ?



Patterns in Flavour

My ~ 5 x 1077 TeV , M~ 2 X 107* TeV . my ~ 0.1 TeV |
mg~5x 1077 TeV , my~10""TeV ., my ~ 6 x 107* TeV .

|Ves| Vel 0.2256 = 0.0010  0.97334 £ 0.00023 0.0415%5-0019

Vil |Vas| Vil 0.97419 £ 0.00022  0.2257+0.0010  0.00359 + 0.00016
| Ved| =
Vial  |Vis|  |Vis| 0.00874F5:00026  0.040740.0010  0.999133+5-500044
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Flavour on E8 (the competition)

e Take 3 generations to come from one curve. ‘
Heckman, Vafa 08

e The corresponding Yukawa matrix is rank 1.

Cecotti, Cheng, Heckman, Vafa " 09
Conlon, EP 09

e Corrections can be induced by non-perturbative effects.
Marchesano, Martucci 09

e These can also be viewed as H-flux. }
Cecotti, Cheng, Heckman, Vafa 09;

Baumann et al. ‘09

e The resulting Yukawa matrix can potentially look like hierarchical
1 hy R
(Wyae) ~ | e B2 B2
h: hp
e Much yet to be understood...

(global effects, size of corrections, backreaction...)



Other candidate model
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Monodromies

This corresponds to the fact that 2 curves intersecting at the E8 point P
may actually be the same curve when extended away from P:

In this case the localised wavefunctions are related by a monodromy
about P.

e Field theory: Some of the U(1)s may be identified if they come from
the same bulk brane

The matter curves that have the same charges under this equivalence
are also identified

101 =t1 < t2 = 102 107 = {t1.t2} Orbit



