Froggatt-Nielsen Models from E8 in F-theory GUTs

Eran Palti (Ecole Polytechnique)

PLANCK2010, CERN

E. Dudas, EP

arXiv:0912.0853

Flavour and String Theory

- Is it possible to explain the matter content and basic flavour patterns of the Standard Model in an elegant way from string theory?
- Is there an underlying unified symmetry behind all the interactions?
- String theory constructions are more constrained than field theory
- Would like to base the construction on a GUT model
- It is generally very difficult to calculate quantities such as Yukawa couplings even up to order 1 factors
- Perturbative type II string theory does not allow for a top Yukawa coupling
- F-theory GUTs present partial solutions to these 2 key problems

F-theory GUTs

Beasley, Heckman, Vafa; Donagi, Wijnholt; ... '08-...

- F-theory describes strongly-coupled solutions of type IIB string theory.
- It is based on compactifying from 12 dimensions to 4 dimensions on an 8-dimensional Calabi-Yau manifolds with singularities.
- The geometry can be chosen such that there is an SU(5) gauge field that lives in four dimensional space time and on a four-dimensional surface S inside the CY

- Can decouple CY bulk as an expansion in GUT/Planck scale.
- Calculability 1

F-theory GUTs

- In S there are curves on which the gauge group is enhanced
- In S there are points on which the gauge group is enhanced further

• Top Yukawa: Uniqueness î

The point of E8

Heckman, Tavanfar, Vafa. `08

• The highest possible enhancement is to E8

$$E_8 \supset SU(5) \times SU(5)_{\perp}:$$

248 $\to (24,1) \oplus (1,24) \oplus (10,5) \oplus (\overline{5},10) \oplus (\overline{10},\overline{5}) \oplus (5,\overline{10})$

- Interactions can be studied by just looking at a single point in the CY
- Uniqueness î
- Calculability ↑↑↑↑↑↑

A closer look at the Point of E8

- ullet The 4-dimensional gauge interactions are $E_8 o SU(5) imes U(1)^4$
- The U(1) charges $t_1 + t_2 + t_3 + t_4 + t_5 = 0$.
- The U(1)s become massive through Green-Schwartz mechanism and leave behind Global Symmetries which the matter is charged under

$$\Sigma_{\mathbf{10}\oplus \bar{\mathbf{10}}}$$
 : $t_i = 0$,
 $\Sigma_{\mathbf{5}\oplus \bar{\mathbf{5}}}$: $-t_i - t_j = 0$, $i \neq j$,
 $\Sigma_{\mathbf{1}}$: $\pm (t_i - t_j) = 0$, $i \neq j$.

Interactions are required to be neutral under the full E8, e.g. Yukawas:

$$5_1 10_1 10_2 = -t_1 - t_2 + t_1 + t_2$$
 $\bar{5}_1 \bar{5}_2 10_3 = t_1 + t_2 + t_3 + t_4 + t_5$

Quark flavour in E8

- Consider the point of E8 and use the U(1) symmetries to generate flavour structure a la Froggat-Nielsen.
- Take each generation to come from a different curve.
- Use U(1)s to forbid Yukawas for all but the top generation.
- Generate corrections through higher dimension operators involving the singlets after giving them a vev.

$$\begin{split} 10_{top} &= \{t_1, t_2\} \\ 10_{chm} &= t_3 \\ 5_{higgs} &= -t_1 - t_2 \\ 1_{FN} &= \{t_1 - t_3, t_2 - t_3\} \end{split} \qquad \begin{split} 5_{higgs} 10_{top} 10_{top} \\ &\frac{< 1_{FN} >}{M_{\star}} 5_{higgs} 10_{top} 10_{chm} \\ &\frac{< (1_{FN} >)}{M_{\star}} 5_{higgs} 10_{chm} 10_{chm} \end{split}$$

Point of E8 model building

- Model build on a point!
- Must specify 2 things that would be determined by a global embedding:
 - 1) The monodromy action: some t's can be identified
 - 2) The multiplicity/chirality on each curve (Flux content)
- Once these are specified the theory includes all operators that are allowed by the U(1) selection rules follows from point intersection.

- Note the difference to field theory models:
- 1) U(1) fields already included in the constructions
- 2) Frogatt-Nielsen fields (GUT singlets) already included
- 3) Matter charges are fixed

The candidate model

Field	Curve	Charges/Orbit	
Chiral spectrum			
5_{H_u}	5_{H_u}	$-t_1 - t_2$	
$ar{5}_{H_d}$	$ar{f 5}_5$	$t_3 + t_5$	
10_t	10_1	$\{t_1, t_2\}$	
10_c	10_{3}	t_4	
10_u	10_2	t_3	
$ar{f 5}_b$	$ar{f 5}_2$	$\{t_1+t_4,t_2+t_4\}$	
$ar{f 5}_{m s}$	$ar{5}_{1}$	$\{t_1+t_3,t_2+t_3\}$	
$ar{5}_d$	$ar{5}_4$	$t_3 + t_4$	
N_1	$\bar{1}_6$	$-t_4 + t_5$	
N_2	$\overline{1}_5$	$-t_3 + t_5$	
N_3	$\overline{1}_3$	$\{-t_1+t_5, -t_2+t_5\}$	
X_1	$\overline{1}_4$	$-t_3 + t_4$	
X_2	1_2	$\{t_1-t_4,t_2-t_4\}$	
X_3	$\bar{1}_1$	$\{-t_1+t_3,-t_2+t_3\}$	
Non-Chiral spectrum			
-	10_{4}	t_5	
-	5_3	$\{-t_1-t_5, -t_2-t_5\}$	
-	5_{6}	$-t_4 - t_5$	
-	1_7	$t_1 - t_2$	

Chiral interactions				
$5_{H_u}10_i10_j$	$\begin{pmatrix} \epsilon_2^2 \epsilon_{\bar{4}}^2 & \epsilon_2^2 \epsilon_{\bar{4}} & \epsilon_2 \epsilon_{\bar{4}} \\ \epsilon_2^2 \epsilon_{\bar{4}} & \epsilon_2^2 & \epsilon_2 \\ \epsilon_2 \epsilon_{\bar{4}} & \epsilon_2 & 1 \end{pmatrix}$			
$ar{5}_{H_d}ar{5}_i10_j$	$\begin{pmatrix} \epsilon_2^2 \epsilon_{\bar{4}}^2 & \epsilon_2 \epsilon_{\bar{4}}^2 & \epsilon_2 \epsilon_{\bar{4}} \\ \epsilon_2^2 \epsilon_{\bar{4}} & \epsilon_2 \epsilon_{\bar{4}} & \epsilon_2 \\ \epsilon_2 \epsilon_{\bar{4}} & \epsilon_{\bar{4}} & 1 \end{pmatrix}$			
$K\supset 5_{H_d}\mathbf{\bar{5}}_iN_j$	$ \begin{pmatrix} \epsilon_2 & 1 & \epsilon_{\bar{1}}\epsilon_2 \\ \epsilon_{\bar{1}}\epsilon_2 & \epsilon_{\bar{1}} & \epsilon_{\bar{1}}\epsilon_{\bar{1}}\epsilon_2 \\ 1 & \epsilon_{\bar{1}}\epsilon_{\bar{4}} & \epsilon_{\bar{1}} \end{pmatrix} $			
$eta f 5_{H_u} ar 5_i$	$(\epsilon_{\bar{4}}\epsilon_2^2, \epsilon_{\bar{4}}\epsilon_2, \epsilon_2)$			
$5_{H_u}\bar{5}_iN_j$	0			
MN_iN_j	0			
$ar{5}_iar{5}_j10_k$	0			
$10_i 10_j 10_k \overline{5}_l$	0			
$\mu 5_{H_u} \mathbf{\bar{5}}_{H_d}$	0			

• If relax some constraints can find more models King, Leontaris, Ross '10

The masses and mixing

We have 3 real parameters that are the 3 vevs which we take as

$$\epsilon_2 = \lambda^2$$
, $\epsilon_{\bar{1}} = \lambda$ $\epsilon_{\bar{1}} \simeq 0.1$ $\lambda \simeq 0.2$.

The quark sector physics:

$$Y^{U} \simeq \begin{pmatrix} \lambda^{6} & \lambda^{5} & \lambda^{3} \\ \lambda^{5} & \lambda^{4} & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1 \end{pmatrix} , \quad Y^{D} \simeq \begin{pmatrix} \lambda^{6} & \lambda^{4} & \lambda^{3} \\ \lambda^{5} & \lambda^{3} & \lambda^{2} \\ \lambda^{3} & \lambda & 1 \end{pmatrix} , \quad V_{CKM} \simeq \begin{pmatrix} 1 & \lambda & \lambda^{3} \\ \lambda & 1 & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1 \end{pmatrix}$$

$$m_u \sim 6 \times 10^{-6} \text{ TeV} , \quad m_c \sim 2 \times 10^{-4} \text{ TeV} , \quad m_t \sim 0.1 \text{ TeV} ,$$

 $m_d \sim 4 \times 10^{-8} \text{ TeV} , \quad m_s \sim 5 \times 10^{-6} \text{ TeV} , \quad m_b \sim 6 \times 10^{-4} \text{ TeV} .$

• The neutrino sector physics: (PMNS anarchic, random example shown)

$$m_{\nu_1} \simeq m_{\nu_2} \simeq 10^{-2} \text{ eV},$$

 $m_{\nu_3} \simeq 4 \times 10^{-3} \text{ eV}.$
 $U_{PMNS} \simeq \begin{pmatrix} -0.05 & -0.49 & -0.91 \\ 0.94 & 0.30 & -0.14 \\ -0.11 & 0.91 & -0.35 \end{pmatrix}$

Summary

- F-theory GUTs are a promising arena for flavour physics: top Yukawa, GUT, locality.
- It is possible to explain the flavour structure observed in the SM through a simple and elegant model based on a type of E8 unification

• Global issues still unrealised/unresolved: matter spectrum, moduli stabilisation, supersymmetry breaking...

Working the U(1)s

- The U(1) symmetries should not just be used for flavour:
 - Forbid a mu term in the superpotential
 - \longrightarrow Naturally generate via Giudice-Masiero $\int d^4 \theta \ Y^\dagger \mathbf{5}_{H_u} \mathbf{\bar{5}}_{H_d}$
 - Forbid dim 4 and dim 5 proton decay operators
 - Forbid neutrino superpotential Dirac masses *
 - Forbid neutrino superpotential Majorana masses *
 - → Naturally generated via operator

Arkani-Hamed et al. '00

$$\int d^4\theta \frac{D_K (H_d)^{\dagger} L N}{M_*} = \int d^2\theta \frac{\mu}{M_*} v D_K L N$$

ullet Unable to forbid the operator $eta_i ar{5}_M^i ar{5}_{H_u} \longrightarrow {\sf R-parity}$?

Patterns in Flavour

$$m_u \sim 5 \times 10^{-7} \text{ TeV}$$
, $m_c \sim 2 \times 10^{-4} \text{ TeV}$, $m_t \sim 0.1 \text{ TeV}$, $m_d \sim 5 \times 10^{-7} \text{ TeV}$, $m_s \sim 10^{-5} \text{ TeV}$, $m_b \sim 6 \times 10^{-4} \text{ TeV}$.

$$\begin{bmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{bmatrix} = \begin{bmatrix} 0.97419 \pm 0.00022 & 0.2257 \pm 0.0010 & 0.00359 \pm 0.00016 \\ 0.2256 \pm 0.0010 & 0.97334 \pm 0.00023 & 0.0415^{+0.0010}_{-0.0011} \\ 0.00874^{+0.00026}_{-0.00037} & 0.0407 \pm 0.0010 & 0.999133^{+0.000044}_{-0.000043} \end{bmatrix}$$

(Mass)²
$$\Delta m_{atm}^2 > \Delta m_$$

Flavour on E8 (the competition)

• Take 3 generations to come from one curve.

Heckman, Vafa `08

• The corresponding Yukawa matrix is rank 1.

Cecotti, Cheng, Heckman, Vafa `09 Conlon, EP `09

Corrections can be induced by non-perturbative effects.

Marchesano, Martucci`09

• These can also be viewed as H-flux.

Cecotti, Cheng, Heckman, Vafa `09; Baumann et al. `09

The resulting Yukawa matrix can potentially look like hierarchical

$$egin{aligned} egin{pmatrix} ig(W_{
m Yuk}ig) &\sim egin{pmatrix} 1 & \hbar_{ heta} & \hbar_{ heta}^2 \ \hbar_{ heta} & \hbar_{ heta}^2 & \hbar_{ heta}^3 \ \hbar_{ heta}^2 & \hbar_{ heta}^3 & \hbar_{ heta}^4 \end{pmatrix} \cdot \end{aligned}$$

Much yet to be understood...

(global effects, size of corrections, backreaction...)

Other candidate model

$$K = \begin{pmatrix} 0 & 0 & 0 \\ \epsilon_2 & 1 & \epsilon_4 \\ 1 & 0 & 0 \end{pmatrix} , W = \begin{pmatrix} 0 & \epsilon_2^2 \epsilon_{-4}^2 & \epsilon_2^2 \epsilon_{-4} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} , M = \begin{pmatrix} \epsilon_2^2 \epsilon_{-4}^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\mathcal{L} \supset \frac{v^2}{M_*} \left(\epsilon_2^2 \epsilon_{-4}^2 \nu_\mu^2 + 2 \epsilon_2^2 \epsilon_{-4} \nu_\mu \nu_\tau + \epsilon_2^2 \nu_\tau^2 \right) + \frac{v\mu}{M_*} \left[\left(\epsilon_2 \nu_e + \nu_\mu + \epsilon_{-4} \nu_\tau \right) N_2 + \nu_e N_1 \right] .$$

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \\ N_1 \end{pmatrix} = \begin{pmatrix} -0.4 \\ -0.6 \\ -0.1 \\ -0.6 \\ -0.4 \end{pmatrix}, \begin{pmatrix} -0.4 \\ -0.6 \\ -0.1 \\ 0.6 \\ 0.4 \end{pmatrix}, \begin{pmatrix} 0.6 \\ -0.4 \\ -0.1 \\ -0.4 \\ 0.6 \end{pmatrix}, \begin{pmatrix} -0.6 \\ 0.4 \\ 0.1 \\ -0.4 \\ 0.6 \end{pmatrix}, \begin{pmatrix} 10^{-8} \\ 0.2 \\ -1 \\ 0.001 \\ 10^{-5} \end{pmatrix},$$

$$v^2/M_* \sim 10^{-3} \text{eV}, (1, -1, 1, -1, 10^{-3}).$$

Monodromies

This corresponds to the fact that 2 curves intersecting at the E8 point P may actually be the same curve when extended away from P:

In this case the localised wavefunctions are related by a monodromy about P.

• Field theory: Some of the U(1)s may be identified if they come from the same bulk brane

The matter curves that have the same charges under this equivalence are also identified

$$10_1=t_1\leftrightarrow t_2=10_2$$
 $10_1=\{t_1,t_2\}$ Orbit