Experiment Control System

...A Brief History
And the path to Operations...

Clara Gaspar, November 2018
The JCOP Project

- Joint COntrols Project
 - Between the 4 LHC Experiments and a CERN Support Group: IT -> EN -> BE
 - Created in December 1997
 - First tasks
 - Gather Requirements from Experiments
 - In-depth Technological Survey
 - SCADA – Supervisory Control and Data Acquisition (commercial and “home-made”)
 - WinCC-OA (PVSS at the time) chosen
 - Define the Architecture, Develop the Framework
Why WinCC-OA?

Technical (& Financial) Reasons
- Windows & Linux (not so common)
- Distributed & Open Architecture
 - Could scale to very large distributed systems
 - Could integrate external tools (FSM, etc.)
- Many tools and interfaces:
 - Graphic Editor, Archiving, Alarm Handling, Drivers, etc.
- Many man-years of development for a small price

“Sociological” reasons
- Standard Interfaces: The same concepts everywhere
 (The datapoint mechanism, the scripting language, Gedi, etc.)
 - Can share resources within and outside the experiment.
 - Not perfect at everything, but a coherent and integrated set of tools
Today:

- Still extremely active
 - Meetings (almost) every week
 - Several FW components being revised and improved:
 - Archiving, Alarm handling, Device access, etc.
 - Provide Support & Training

JCOP Tools Usage:

- LHCb use the JCOP Concepts throughout ECS
 - DAQ/RunControl, DCS/BigBrother, etc.
- While the other LHC Experiments only for DCS
 - NA62 and ProtoDUNE more like LHCb
- Other CERN domains also use it:
 - Magnets, Cryogenics, Electricity, Cooling, Vacuum, etc.

Clara Gaspar, November 2018
LHCb Upgrade ECS

- Same Architecture & Concepts as current system
 - Selected Concepts:
 - Integration & Homogeneity
 - Partitioning & Automation
 - Promote HW Standardization
 - Same board (PCIE40) for:
 - DAQ R/O (TELL40)
 - TFC + ECS (SOL40)
 - CAEN, Wiener, Iseg, ELMBs…
 - Separate Data/Control paths
 - Promote SW Uniformity
 - Guidelines, FW Components, FSM Templates
 - Small number of Operators
 - 1 Operator +1 Data Manager

Clara Gaspar, November 2018
LHCb Operations

Main Tools:

- **RunControl**
 - Handles the DAQ & Dataflow
 - Allows to:
 - Configure the system
 - Start & Stop runs

- **AutoPilot**
 - Knows how to start and keep a run going from any state.

- **BigBrother**
 - Based on the LHC state:
 - Controls SD Voltages
 - VELO Closure
 - RunControl
Run Control

Matrix Domain
Sub-detector
Partition:
- Part of the system that can run independently and concurrently with the others (LHCb, VELO, RICH1, etc.)

Some resources are shared:
- TFC
- HLT
- Storage
- Monitoring
- Reconstruction

Need to “Allocate”
- In order to define the resources needed by a partition:
 - For example the number of HLT sub-farms
Sub-Detector Integration

Clara Gaspar, November 2018
Run Control FSM

Steps:

- Allocate resources
- Configure Sub-systems: Apply Electronics settings, prepare DAQ/HLT jobs
- Start: Prepare to acquire data
- Start Trigger: TFC only
Run Control

Matrix Domain
Sub-detector
Activity Driven
Run Control Activities

Activity

“Activity” defines the “recipe” which will be applied by all sub-systems on CONFIGURE

- Ex.: PHYSICS|LEAD
 Will try to apply “PHYSICS|LEAD” everywhere, if not existing will try “PHYSICS”, if not existing “DEFAULT”

“Activity” also contains the global run settings:

- Architecture for farm nodes ->
- Nr. Sub-farms
- Trigger Config. (TCK)
- Data Type & Destination:
 - Local, Castor, Offline
- Calibration “Step Runs”
 - TAE flag, nr. events, nr. steps
Sub-detector Configuration

Configure/mode="PHYSICS|LEAD"
Check… Ex: Get “PHYSICS” Settings
Apply Settings
ECS Databases

WinCC-OA (Project) Data Base Context

- Configuration settings for a running mode “Recipes”
- Monitoring data (at regular intervals)
- If Needed for next run settings (Pedestal Followers)
- If Archive On
- If Passes Conditions filter
- To Offline
LHCb Operations

- **Main Tools:**

 - **RunControl**
 - Handles the DAQ & Dataflow
 - Allows to:
 - Configure the system
 - Start & Stop runs

 - **AutoPilot**
 - Knows how to start and keep a run going from any state.

 - **BigBrother**
 - Based on the LHC state:
 - Controls SD Voltages
 - VELO Closure
 - RunControl
Big Brother

Based on LHC state, controls:
- Voltages
- VELO Closure
- Run Control

Can sequence activities, ex.:
- End-of-fill Calibration
- Handshake Confirmation
- Voice Messages
Big Brother Scheduler

Scheduler:
Provides complete Run Control Automation
Big Brother Voltage Table

HV Configuration

<table>
<thead>
<tr>
<th>Subdetector</th>
<th>Injection</th>
<th>S1</th>
<th>Ramp</th>
<th>S1</th>
<th>PhysAdjust</th>
<th>S1</th>
<th>Physics</th>
<th>S1</th>
<th>Adjust</th>
<th>S1</th>
<th>Dump</th>
<th>S1</th>
<th>Notebeam</th>
<th>S1</th>
<th>PM</th>
<th>S1</th>
<th>EOF</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECAL</td>
<td>STANDBV1</td>
<td>✓</td>
</tr>
<tr>
<td>HCAL</td>
<td>STANDBV1</td>
<td>✓</td>
</tr>
<tr>
<td>IT</td>
<td>STANDBV1</td>
<td>✓</td>
</tr>
<tr>
<td>MUON</td>
<td>STANDBV1</td>
<td>✓</td>
</tr>
<tr>
<td>OT</td>
<td>STANDBV1</td>
<td>✓</td>
</tr>
<tr>
<td>PARS</td>
<td>OFF</td>
<td>✓</td>
</tr>
<tr>
<td>RICH1</td>
<td>OFF</td>
<td>✓</td>
</tr>
<tr>
<td>RICH2</td>
<td>OFF</td>
<td>✓</td>
</tr>
<tr>
<td>TT</td>
<td>STANDBV1</td>
<td>✓</td>
</tr>
<tr>
<td>VELO</td>
<td>STANDBV1</td>
<td>✓</td>
</tr>
</tbody>
</table>

LV Configuration

<table>
<thead>
<tr>
<th>Subdetector</th>
<th>Injection</th>
<th>S1</th>
<th>Ramp</th>
<th>S1</th>
<th>PhysAdjust</th>
<th>S1</th>
<th>Physics</th>
<th>S1</th>
<th>Adjust</th>
<th>S1</th>
<th>Dump</th>
<th>S1</th>
<th>Notebeam</th>
<th>S1</th>
<th>PM</th>
<th>S1</th>
<th>EOF</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>READY</td>
<td>✓</td>
</tr>
<tr>
<td>RICH1</td>
<td>OFF</td>
<td>✓</td>
</tr>
<tr>
<td>RICH2</td>
<td>OFF</td>
<td>✓</td>
</tr>
<tr>
<td>TI</td>
<td>READY</td>
<td>✓</td>
</tr>
<tr>
<td>VELO</td>
<td>READY</td>
<td>✓</td>
</tr>
</tbody>
</table>

Messages

- **Matrix Sub-detector X LHC State**
Voltage Control

<table>
<thead>
<tr>
<th>Sub-Detector</th>
<th>State</th>
<th>Req. HV</th>
<th>%Ok</th>
<th>HV State (A/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEL0_LHC_HV</td>
<td>OK</td>
<td>ANY</td>
<td>0.00</td>
<td>READY</td>
</tr>
<tr>
<td>TT_LHC_HV</td>
<td>RAMPING_ADJUST</td>
<td>STANDBY1</td>
<td>0.00</td>
<td>RAMPING_STANDBY1</td>
</tr>
<tr>
<td>IT_LHC_HV</td>
<td>OK</td>
<td>STANDBY1</td>
<td>100.00</td>
<td>STANDBY1</td>
</tr>
<tr>
<td>OT_LHC_HV</td>
<td>OK</td>
<td>STANDBY2</td>
<td>100.00</td>
<td>STANDBY2</td>
</tr>
<tr>
<td>RICH1_LHC_HV</td>
<td>OK</td>
<td>READY</td>
<td>100.00</td>
<td>READY</td>
</tr>
<tr>
<td>RICH2_LHC_HV</td>
<td>OK</td>
<td>READY</td>
<td>100.00</td>
<td>READY</td>
</tr>
<tr>
<td>PRS_LHC_HV</td>
<td>OK</td>
<td>READY</td>
<td>100.00</td>
<td>READY</td>
</tr>
<tr>
<td>ECAL_LHC_HV</td>
<td>RAMPING_ADJUST</td>
<td>READY</td>
<td>9.38</td>
<td>RAMPING_READY</td>
</tr>
<tr>
<td>HCAL_LHC_HV</td>
<td>RAMPING_ADJUST</td>
<td>READY</td>
<td>75.00</td>
<td>RAMPING_READY</td>
</tr>
<tr>
<td>MUON_LHC_HV</td>
<td>OK</td>
<td>STANDBY1</td>
<td>0.00</td>
<td>STANDBY1</td>
</tr>
</tbody>
</table>

- **State column** (Current SD state regard. LHC state)
- **Requested** (SD target state)
- **%Ok**
- **HV/LV State** (SD Current state)
Sub-detectors can have a “parallel” Safety tree

- Does not replace HW/DSS interlocks

DCS FSM
(HV FSM Equivalent)
Alarm Screen

- Normally empty
- Every alarm should be followed up
- May also provide complementary information to FSM Errors

Severities:
- Warning
- Error
- Fatal
Alarm Screen (Yesterday)
Legend:

- **Not yet started**
- **Development started**
 (Tools identified)
- **Under development**
- **Almost Ready**
 (Prototype exists)
- **Ready**

Slide from Nov. 2006

<table>
<thead>
<tr>
<th>VELO</th>
<th>ST</th>
<th>OT</th>
<th>RICH</th>
<th>CALO</th>
<th>MUON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IT</td>
<td>TT</td>
<td>RICH1</td>
<td>RICH2</td>
<td>ECAL</td>
</tr>
</tbody>
</table>

DAQ

<table>
<thead>
<tr>
<th>FE</th>
<th>SPECS</th>
<th>SPECS</th>
<th>SPECS</th>
<th>SPECS/J</th>
<th>SPECS/J</th>
<th>SPECS</th>
<th>SPECS</th>
<th>SPECS</th>
<th>SPECS</th>
<th>SPECS/J</th>
<th>ELMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>TELL1/UKL1</td>
<td>CC-PC</td>
</tr>
</tbody>
</table>

DCS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Environ.</td>
<td>ELMB</td>
<td>SPECS</td>
<td>SPECS</td>
<td>SPECS</td>
<td>ELMB</td>
<td>ELMB</td>
<td>ELMB</td>
<td>ELMB</td>
<td>ELMB</td>
<td>ELMB</td>
<td>ELMB</td>
</tr>
</tbody>
</table>

Cooling

<table>
<thead>
<tr>
<th>Gas</th>
<th>Nikhef</th>
<th>2 TC/CV</th>
<th>2 TC/CV</th>
<th>TC/CV</th>
<th>TC/CV</th>
<th>TC/CV</th>
<th>TC/CV</th>
<th>TC/CV</th>
<th>TC/CV</th>
<th>TC/CV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GasWG</td>
<td>GasWG</td>
<td>GasWG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HV

<table>
<thead>
<tr>
<th>HV</th>
<th>ISEG</th>
<th>CAEN</th>
<th>CAEN</th>
<th>CAEN</th>
<th>CC-PC</th>
<th>CC-PC</th>
<th>SPECS</th>
<th>SPECS</th>
<th>SPECS</th>
<th>SPECS</th>
<th>C</th>
<th>FL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAI crates</td>
<td>CERN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other</th>
<th>VELO Posit.</th>
<th>PLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>VELO Vacuum</td>
<td>PLC</td>
<td></td>
</tr>
<tr>
<td>VELO Interlock</td>
<td>ELMB</td>
<td></td>
</tr>
<tr>
<td>ST BP pos.</td>
<td>SPECS</td>
<td>SPECS</td>
</tr>
<tr>
<td>IT RadMon</td>
<td>VME</td>
<td></td>
</tr>
<tr>
<td>OT Pos. Mon</td>
<td>VME</td>
<td></td>
</tr>
<tr>
<td>OT RASNIK AI</td>
<td>PCI</td>
<td></td>
</tr>
<tr>
<td>RICH Si. bias</td>
<td>CAEN</td>
<td>CAEN</td>
</tr>
<tr>
<td>RICH Magfield</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>RICH Laser Al</td>
<td>SPECS</td>
<td></td>
</tr>
<tr>
<td>RICH MagDist</td>
<td>SPECS</td>
<td></td>
</tr>
<tr>
<td>Calo LED</td>
<td>SPECS</td>
<td>SPECS</td>
</tr>
<tr>
<td>Calo source</td>
<td>CAN</td>
<td>CAN</td>
</tr>
</tbody>
</table>
Conclusion

- ECS “Readiness”
 - Tools are better than in 2016, but:
 - Very short time
 - A lot to be done
 - (In 2008 we had an extra year…)

- Don’t hesitate to talk to us…