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Parks of Pittsburgh!

As seen in Frick Park!
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Motivation
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Beyond a minimal WIMP

• Spin dependent interactions only

• Velocity suppression at low v

• Non-SM annihilation modes

• Non-minimal stabilization symmetry

• Multi-component DM sector

• High(er) velocity flux (i.e. boosted)
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Thermal relic dark matter is slow
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Boosted DM: “Elastic” scattering
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Boosted DM: Inelastic scattering
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BDM Benchmark Models
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Simple BDM models exist
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First benchmark: Axial Z ′

• In addition to annihilation, there is a scattering

process that allows for detection

L ⊃ −QV ,(A)
χ gZ ′ Z

′
µ χ̄γ

µ(γ5)χ

−
∑
f

Q
V ,(A)
f gZ ′ Z

′
µ q̄f γ

µ(γ5)qf

• As a first benchmark, take

QV
i = 0
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Note on two component case

• Two component: annihilation with Z ′ with

Qψ � Qχ
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• Abundance of χ much less than ψ

• Charge of ψ floats the thermal relic abundance
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BDM Flux
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Solar capture & detection

SunDM Earth

JB, Cui, Zhao, JCAP 1502 (2015) 005
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Solar capture & detection

Hadron scattering

Sun Earth

χ

pp

χ

Capture

JB, Cui, Zhao, JCAP 1502 (2015) 005

14



Solar capture & detection
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Solar capture & detection

Hadron scattering
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Solar capture & detection

Hadron scattering

Sun Earth
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DM capture: Framework

C =

∫
dV du σχ,p(w → v)|v<vesc

w 2

u
nχ nH f (u)

• σχ,p ∼ σDD

• w/u: Velocity enhancement

• nχ: Halo DM density

• nH : Solor hydrogen density (from model AGSS-09)

• f (u): DM (Boltzmann) velocity distribution at

r =∞
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DM annihilation

• DM annihilation determined by equilibrium

AN2 = C − E N

• Assuming annilation σ ∼ pb, t� � τeq

• DM evaporation: DM upscattering by tail of H

thermal distribution

• Evaporation negligible for mχ > 5 Gev
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DM detection rate

• Flux at Earth is given by

Φ =
C

4πAU2

• Combining to determine the detection rate

R = Φ× σχ,p × ε× Np

• Detection rates accessible to kton detectors

R ∼ 1 yr−1kton−1

for accessible allowed parameter space
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BDM Monte Carlo
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A New Tool

• Elastic scattering off free nucleons can be calculated

analytically

• Nuclear physics at scale 250 MeV

• DIS above scale 2 GeV

• New Monte Carlo tool as part of GENIE
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Nuclear Effects Matter

Courtesy of Yun-Tse Tsai!
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Fixed target kinematics primer

χ

χ

X

k ′

p′

k

p/n

p = (MN , 0, 0, 0)

X : p/n for elastic, mess of hadrons for inelastic

q2 = −Q2 = (p′ − p)2 & W 2 = k ′2

0 ≤ Q2 ≤ 4p2
1,CM & MN ≤ W ≤

√
s −Mχ

Inelastic can begin at γ & 1 + Mπ/MN
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Three different processes

χ

NN

χ χ

∆/N∗

N

π
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χ χ χ

{N q }Xq

Elastic Resonant Deep Inelastic

Relatively easy Dominated by ∆,N∗ Use standard parton

W ∈ [1, 2] GeV model

Needs form factor Needs a model DM beam?

Rein & Sehgal:

Ann.Phys.133, 79 (1981) 22



All processes could be important
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Elastic scattering

• Three form factors required to describe elastic

Γµ = F1(q2) γµ +
1

2MN
F2(q2)σµν iqν + FA(q2) γµ γ5

• Assume the standard dipole form

F ∝ 1

(1 + Q2/M2
V ,A)2

• F1(0) constrained by charge conservation

• F2(0) given by anomalous magnetic moments

• FA(0) fit from data or lattice (spin form factors)
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Deep inelastic scattering

• Low W : semi-empirical Koba-Nielsen-Olesen model

• Imported from νN data, so inaccurate

• High W : simplified Pythia model

• Treats beam remnant as a diquark

• Fragments and hadronizes final state quark-diquark pair

• Radiation not be handled correctly–relevant at high W
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Nuclear effects are important

Model large nucleus as Fermi gas with pF ∼ 250 MeV

Fermi motion
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Current Status of BDM in GENIE

X 2 models: fermion or scalar DM, axial Z ′ coupling

X Elastic and Deep Inelastic scattering implemented

X Framework mostly set for further models

X Integrated into GENIE v3
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Conclusions
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Conclusions

• Traditional direct detection continues to put

pressure on minimal WIMP scenarios

• Boosted dark matter models are an alternative with

signals at large volume neutrino detectors

• New Monte Carlo tools required to determine

sensitivity to BSM at fixed target experiments
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