Boosted Dark Matter at Large Volume Neutrino Detectors

Joshua Berger

University of Pittsburgh

Cui, JB, Zhao: JCAP 1502 (2015) no.02, 005 JB: In progress JB, **Tsai**, Petrillo, Stocks, Graham, Convery, Cui, Necib, Zhao, Assadi: In progress

Nu Theories Workshop, University of Pittsburgh

November 5, 2018

Parks of Pittsburgh!

As seen in Frick Park!

Motivation

BDM Benchmark Models

BDM Flux

BDM Monte Carlo

Conclusions

Motivation

Beyond a minimal WIMP

- Spin dependent interactions only
- Velocity suppression at low v
- Non-SM annihilation modes
- Non-minimal stabilization symmetry
- Multi-component DM sector
- High(er) velocity flux (i.e. boosted)

Thermal relic dark matter is slow

Nucleus Kinetic Energy O(10 KeV)

Boosted DM: "Elastic" scattering

Nucleon Kinetic Energy O(100 MeV)

Boosted DM: Inelastic scattering

BDM Benchmark Models

Simple BDM models exist

First benchmark: Axial Z'

• In addition to annihilation, there is a scattering process that allows for detection

$$egin{aligned} \mathcal{L} &\supset & - Q^{V,(\mathcal{A})}_{\chi} \, g_{Z'} \, Z'_{\mu} \, ar{\chi} \gamma^{\mu}(\gamma^5) \chi \ & - \sum_f Q^{V,(\mathcal{A})}_f \, g_{Z'} \, Z'_{\mu} \, ar{q}_f \gamma^{\mu}(\gamma^5) q_f \end{aligned}$$

• As a first benchmark, take

$$Q_{i}^{V} = 0$$

Note on two component case

• Two component: annihilation with Z' with

- Abundance of χ much less than ψ
- Charge of ψ floats the thermal relic abundance

BDM Flux

Rescattering

Hadron scattering

JB, Cui, Zhao, JCAP 1502 (2015) 005

Hadron scattering

JB, Cui, Zhao, JCAP 1502 (2015) 005

DM capture: Framework

$$C = \int dV \, du \, \sigma_{\chi,p}(w \to v)|_{v < v_{\rm esc}} \, \frac{w^2}{u} \, n_{\chi} \, n_H \, f(u)$$

- $\sigma_{\chi,p} \sim \sigma_{\rm DD}$
- w/u: Velocity enhancement
- n_{χ} : Halo DM density
- n_H : Solor hydrogen density (from model AGSS-09)
- f(u): DM (Boltzmann) velocity distribution at $r = \infty$

DM annihilation

• DM annihilation determined by equilibrium

$$A N^2 = C - E N$$

- Assuming annilation $\sigma \sim \mathrm{pb}$, $t_{\odot} \gg \tau_{\mathrm{eq}}$
- DM evaporation: DM upscattering by tail of *H* thermal distribution

• Evaporation negligible for $m_\chi > 5~{
m Gev}$

DM detection rate

• Flux at Earth is given by

$$\Phi = \frac{C}{4 \,\pi \,\mathrm{AU}^2}$$

• Combining to determine the detection rate

$$R = \Phi \times \sigma_{\chi,p} \times \epsilon \times N_p$$

Detection rates accessible to kton detectors

$$R \sim 1 {
m yr}^{-1} {
m kton}^{-1}$$

for accessible allowed parameter space

BDM Monte Carlo

A New Tool

- Elastic scattering off free nucleons can be calculated analytically
- Nuclear physics at scale 250 MeV
- DIS above scale 2 GeV
- New Monte Carlo tool as part of GENIE

Courtesy of Yun-Tse Tsai!

Fixed target kinematics primer

X: p/n for elastic, mess of hadrons for inelastic

$$q^2 = -Q^2 = (p'-p)^2$$
 & $W^2 = k'^2$
 $0 \le Q^2 \le 4p_{1,{
m CM}}^2$ & $M_N \le W \le \sqrt{s} - M_\chi$
Inelastic can begin at $\gamma \gtrsim 1 + M_\pi/M_N$

Three different processes

Deep Inelastic

Use standard parton model

DM beam?

All processes could be important

• Three form factors required to describe elastic

$$\Gamma^{\mu} = F_1(q^2) \, \gamma^{\mu} + rac{1}{2 \, M_N} \, F_2(q^2) \, \sigma^{\mu
u} \, iq_{
u} + F_A(q^2) \, \gamma^{\mu} \, \gamma^5$$

• Assume the standard dipole form

$$F \propto rac{1}{(1+Q^2/M_{V,A}^2)^2}$$

- $F_1(0)$ constrained by charge conservation
- $F_2(0)$ given by anomalous magnetic moments
- $F_A(0)$ fit from data or lattice (spin form factors)

Deep inelastic scattering

- Low W: semi-empirical Koba-Nielsen-Olesen model
 - Imported from νN data, so inaccurate

- High W: simplified Pythia model
 - Treats beam remnant as a diquark
 - Fragments and hadronizes final state quark-diquark pair
 - Radiation not be handled correctly-relevant at high W

Nuclear effects are important

Model large nucleus as Fermi gas with $p_F \sim 250 \text{ MeV}$

Current Status of BDM in GENIE

- \checkmark 2 models: fermion or scalar DM, axial Z' coupling
- $\checkmark\,$ Elastic and Deep Inelastic scattering implemented
- \checkmark Framework mostly set for further models
- ✓ Integrated into GENIE v3

Conclusions

Conclusions

• Traditional direct detection continues to put pressure on minimal WIMP scenarios

• Boosted dark matter models are an alternative with signals at large volume neutrino detectors

• New Monte Carlo tools required to determine sensitivity to BSM at fixed target experiments