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Boosted Dark Matter

Cold DM

1. Cold dark matter captured by 
dark matter concentrated region, 
such as the Sun or Galaxy Center
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Refs: J. Berger’s Talk,
JCAP 1502 (2015) 005

https://indico.cern.ch/event/758297/contributions/3198480/
http://iopscience.iop.org/article/10.1088/1475-7516/2015/02/005/meta
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4. Look for scattered electrons or recoil protonsRefs: J. Berger’s Talk,
JCAP 1502 (2015) 005

https://indico.cern.ch/event/758297/contributions/3198480/
http://iopscience.iop.org/article/10.1088/1475-7516/2015/02/005/meta


Detector: DUNE
• Liquid-Argon Time-

Projection Chamber 
(LArTPC)

• 10k tons of LAr in 
fiducial volume for each 
module

• Total 4 modules

• First module operating 
in 2024

• Photo: one prototype at 
CERN, ProtoDUNE
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LArTPC

• LAr: large interaction rate 

• Scalability: Ar inexpensive

• High spatial resolution

• able to characterize 
complicated events

• Calorimetry measurement

• e/γ separation

• Low detection threshold

• Sensitive to supernova νe
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ArgoNeuT
arXiv:1610.04102

75 cm
Run 3493 Event 41075, October 23rd, 2015 

γ
γ
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e+e-
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Low Energy Threshold

Wire pitch 4.7mm
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55 cm
Run 3469 Event 53223, October 21st, 2015 



Production

• Focus on boosted DM produced via annihilation in 
the Sun

• Benchmark classification: mono-energetic boosted 
DM flux (JCAP 1502 (2015) 005)

• Energy depends on masses of dark matter
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Cold DM

Cold DM

Boosted DM

SM particle

Cold DM

Cold DM

Boosted DM’

Boosted DM’

http://iopscience.iop.org/article/10.1088/1475-7516/2015/02/005/meta


Detection

• DM-SM particle interactions mediated by Z’ vector 
boson (neutral current-like)

• Focus on baryophilic channels: better sensitivity in 
DUNE; complementary to other searches

• Only spin dependent couplings at tree level

• Focus on elastic scattering and deep inelastic 
scattering at this stage (resonant scattering to come)
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Boosted DM Signal
• Mono-energetic boosted DM 

flux coming from the Sun 
direction, with information 
about relative DUNE location

• DM-Ar interaction events 
provided by J. Berger

• GENIE simulates the final 
state interactions

• GENIE default FSI model: 
HAIntranuke model

• Probe the (DM-Z’, Z’-SM) 
coupling constants (gZ’)

p

π

n
Ar

DM

DM

 9



Parameter Space

Cold DM

Cold DM

Cold DM

Boosted DM

Boosted DM

Cold DMCold DM
Boosted DM

Four boosted DM mass 
(MDM): 5, 10, 20, 40 GeV

Three boosted factors 
(γ): 1.25, 2, 10
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Main Background
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atmospheric neutrinos

GENIE for neutrino-Ar 
and final state interactions

Randomly sample the 
Sun position in a year 
for each event

845 NC events in 10k 
ton LAr per year

Bartol maximum 
flux: νe, νμ, νe, νμ



Detector Response

• GEANT4 detector material (LAr) simulation

• Consider quasi-stable final state particles:  
p±, n, π±, μ±, e±, γ
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DM+Ar→DM+π0+π0+n+XMDM = 40 GeV, EDM = 400 GeV

π0→γ+γ

n+nucleus→p++π-



Detector Response
• Detector effects

• Angular resolution

• Energy resolution

• Detection threshold (in kinetic energy)

• Detector acceptance

• Reconstruction efficiency

• Particle identification efficiency

• Study different scenarios

• DUNE CDR, MicroBooNE, and other scenarios

• Include neutrons or not
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Today’s results



Detector Response Today
• DUNE Conceptual Design Report (2016) scenario

• Other detector effects in progress
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Angular 
resolution Energy/Momentum resolution KE Threshold [MeV]

p 5° p<400 MeV/c: 10%
p>400 MeV/c: 5%⊕30%/√E [GeV] 50

n 5° 40%/√E [GeV] 50

π 1°
μ-like contained: track length  

π-like contained: 5%
Shower or exiting: 30%

100

e/γ 1° 2%⊕15%√E [GeV] 30

μ 1° Contained: track length 
Exiting: 30% 30

https://arxiv.org/abs/1512.06148
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Definition of Angle, θ
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Total Momentum

MDM = 10 GeV
Include neutrons
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Total Momentum

MDM = 10 GeV
Exclude neutrons
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Angular Distribution

MDM = 5 GeV
Include neutrons

Leading momentum

MDM = 20 GeV
Exclude neutrons
Total momentum

MDM = 40 GeV
Include neutrons
Total momentum

MDM = 40 GeV
Exclude neutrons

Leading momentum
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Preliminary Selection
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Preliminary Selection
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cosθ > 0.6



Preliminary Selection
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• Obtain the efficiency (εAr) for 
signal models

• Count the expected number 
of events for background

cosθ > 0.6



Event Rate

• Signal event rate (per second): 
 
 

• Np = 2.7x1033 for 10k tons of LAr

• Expected numbers of background events per year

• Scenario if reconstructing neutrons: 104.0±2.7

• Scenario if not reconstructing neutrons: 79.4±2.4
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Φ(gZ′� = 1) × σDM-SM(gZ′ � = 1) × g8
Z′� × ϵAr × Np



Efficiency and Cross Section
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MDM (GeV) � ✏Ar (w/ n) ✏Ar (w/o n) �DM�Ar/g4Z0 (cm
2
)

5 1.25 0.3621 0.1745 3.12217⇥ 10

�28

10 1.25 0.3557 0.1689 2.79196⇥ 10

�28

20 1.25 0.3401 0.1664 2.28276⇥ 10

�28

40 1.25 0.332 0.1601 2.25314⇥ 10

�28

5 2 0.732 0.5718 1.07767⇥ 10

�27

10 2 0.7745 0.6163 1.18175⇥ 10

�27

20 2 0.7885 0.6306 1.24278⇥ 10

�27

40 2 0.7974 0.642 1.27414⇥ 10

�27

5 10 0.9494 0.8825 2.07506⇥ 10

�27

10 10 0.9569 0.8892 2.17985⇥ 10

�27

20 10 0.9607 0.8979 2.23837⇥ 10

�27

40 10 0.9636 0.9013 2.25703⇥ 10

�27



Sensitivity

• Large statistic estimate for the expected significance 
 
  

• Project 5SD discovery reach with 10k ton x1 year
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Sensitivity Comparison
• Super-Kamiokande with 6 

years and 22.5k ton 
fiducial volume

• No oriented efficiency 
measurement from Super-
K; not fair comparison
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Experimental Remarks
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Collect Data in DUNE
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Time

Triggered Time
A few ms

Triggered Time
A few ms

Record neutrino events induced by accelerator beam:
Know when neutrinos arrive in advance

Record the relevant chunk of data



Collect Data in DUNE

Record physics events not induced by accelerator beam:
Do not know when interesting events occur in advance

Continuously read out data

Time
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Find interesting events in real time and record them



Collect Data in DUNE
High spatial resolution in LArTPC results in a huge 

volume of data
Main challenge on data acquisition

Drive the DUNE data acquisition design

Time
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Find interesting events in real time and record them



Reconstruction Challenges
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Reconstruction Challenges
• Large amount of information

• Find the signal events (interaction vertices help)
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Reconstruction Challenges
• Large amount of information

• Find the signal events (interaction vertices help)
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• Correlate charge deposition to physics 
objects

• Obtain appropriate calorimetric corrections



Possible Background Source
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30 cm
Run 3471 Event 54287, October 21st, 2015 

A low momentum muon from 
charged-current atmospheric 

neutrino events may look like a 
charged pion and mimic the 

BDM signal



Neutron Detection
• ArgoNeuT measured energy 

depositions from photons 
produced by

• De-excitation of the 
interacted nucleus

• Inelastic scattering of 
primary neutrons

• Open a window of studies of 
new physics scenarios

• Not able to separate the 
two sources yet

• arXiv: 1810.06502
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https://arxiv.org/abs/1810.06502


Summary
• Search for boosted dark matter in massive 

neutrino detectors, such as DUNE,

• Provides an alternative way for dark matter 
search

• Broadens the physics program in neutrino 
experiments

• First relatively realistic study in massive LArTPCs

• Improvement of the analysis and comparison to 
dark matter direct detection results in progress

• Stay tuned!
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The Boosted Team
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Theorists

Experimentalists

Josh Berger Yanou Cui Lina Necib

Yun-Tse Tsai Gianluca Petrillo Dane Stocks

Yue Zhao

Mark Convery
Matt Graham

Jonathan Assadi



Backup
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How A LArTPC Works
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E = 273 V/cm

Cathode

Anode
ν

Scintillation light

Ionization e-

Incoming 
neutrino 

interacting 
with LAr

Charged secondary 
particles ionize LAr, 
producing electrons 
and scintillation light



How A LArTPC Works
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E = 273 V/cm

Cathode

Light 
collected by 

PMT, 
determining 
event time t0

Anode



How A LArTPC Works
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E = 273 V/cm

Cathode

Drift e-

Anode

Electrons drift 
towards anode

(longest drift time 
at MicroBooNE: 

2.3ms)



How A LArTPC Works
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E = 273 V/cm

Cathode

Anode

Electrons detected 
by the wire planes 

at anode, 
providing the 

spatial, kinematic 
information.

2 induction planes
1 collection plane



How A LArTPC Works
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E = 273 V/cm

Cathode

Anode

Electrons detected 
by the wire planes 

at anode, 
providing the 

spatial, kinematic 
information.
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75 cm
Run 3493 Event 41075, October 23rd, 2015 
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Nuclear Effects in Argon

• MDM = 10 GeV, EDM = 20 GeV

• Total momentum

• Nuclear effects impact 
kinematics

 40



BDM Signal Kinematics

• Investigating the correlation 
between kinematic 
variables in BDM signal 
events
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Michel Electron

JINST 12 P09014 
(2017)
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JINST 12 P09014 
(2017)



Possible Background Source

BNB DATA : RUN 5235 EVENT 1915. MARCH 2, 2016.
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An atmospheric charged-current neutrino 
event with an electron may look like a π0 
with a photon missing from a BDM event


