Short-Baseline Oscillations Current and Future Efforts NuTheories Workshop University of Pittsburgh, November 7, 2018

Standard Model Mountain

Standard Model

Three-Neutrino Oscillations

Symmetry Magazine, 2/2013

With massive neutrinos, **flavor** eigenstates of the weak interaction are related to **mass** eigenstates of the freeparticle Hamiltonian:

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$$

$$\underbrace{\mathsf{Atmospheric}}_{\& \text{Accelerator}} \qquad \underbrace{\mathsf{Reactor}}_{\& \text{Reactor}} \qquad \underbrace{\mathsf{Solar}}_{\& \text{KamLAND}} \\ U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{-i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$|\nu_{\alpha}\rangle \rightarrow |\nu(L \sim t)\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle e^{-i(m_{i}^{2}L/2E)}$$

Standard Model

Three-Neutrino Oscillations

LSND

Liquid Scintillator Neutrino Detector

- ▶ LANL (LAMPF) Beam, 1993 1998
- $\blacktriangleright \ \overline{\nu}_{\mu} \ {\rm from} \ \mu^+ \ {\rm DAR}, \ L \sim 30 \ {\rm m}$
- 3.8σ excess consistent with v
 _e appearance at small L/E ~ 1 m/MeV
 Δm² ~ 1 eV², sin²2θ_{μe} ~ 0.26%

LSND

Liquid Scintillator Neutrino Detector

- ▶ LANL (LAMPF) Beam, 1993 1998
- $\blacktriangleright \ \overline{\nu}_{\mu} \ {\rm from} \ \mu^+ \ {\rm DAR}, \ L \sim 30 \ {\rm m}$
- 3.8σ excess consistent with v_e appearance at small L/E ~ 1 m/MeV
 Δm² ~ 1 eV², sin²2θ_{μe} ~ 0.26%

Sterile Neutrinos

Extending the Three-Neutrino Paradigm

- Number of active neutrino flavors is fixed to three by Z width (LEP)
- Additional non-interacting neutrino states, detectable through impact on oscillations
- \blacktriangleright PMNS matrix expands to $N\!\!\times\!N$
- New mixing angles, mass splittings, and possibly CP-violating phases
- ▶ 3+1, 3+N, 1+3+1, ...

An effective two-neutrino model

$$P_{\alpha\beta} = 4|U_{\alpha4}|^2|U_{\beta4}|^2\sin^2\left(1.27\frac{\Delta m_{41}^2 L}{E}\right)$$

MiniBooNE

The Low-Energy Excess

- \blacktriangleright Fermilab Booster Neutrino Beam, 2002 ∞
- Oil Cherenkov detector
- $L/E \sim \text{LSND} (1 \text{ m/MeV})$
- EM-like excess at low energies
 - Doubled statistics in Fall 2018
 - Consistent with LSND
 - See arxiv:1805.12028

MiniBooNE

The Low-Energy Excess

- \blacktriangleright Fermilab Booster Neutrino Beam, 2002 ∞
- Oil Cherenkov detector
- $L/E \sim \text{LSND} (1 \text{ m/MeV})$
- EM-like excess at low energies
 - Doubled statistics in Fall 2018
 - Consistent with LSND
 - See arxiv:1805.12028

The Reactor Anomaly

- ▶ New flux calculations create/reveal a deficit in reactor neutrino measurements
- ▶ Uncertainties remain large, plus unaccounted-for structure in energy

$\begin{array}{c} Gallium \\ {\rm GALLEX/GNO \ and \ SAGE} \end{array}$

- Radiochemical solar neutrino detectors
 - $\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^{-1}$
- Efficiency measurements with MCi $^{51}\mathrm{Cr}~\nu_e$ source
- ▶ Both observe a deficit: short-baseline v_e oscillations with $L/E \sim 1$ m/MeV?

GALLEX/GNO Gran Sasso, Italy

SAGE Baksan, Russia

http://cerncourier.com/cws/article/cern/6879511

k = 1, 2, ... K

12

99%CI

Disappearance

Tension in Measurements

▶ Meanwhile, no evidence in disappearance (and other appearance) searches:

ν_e Appearance

- ► KARMEN (Karlsruhe, $\bar{\nu}_e$) \rightarrow limit
- ▶ ICARUS (CNGS) \rightarrow limit
- ▶ NOMAD (CERN SPS) \rightarrow limit

ν_e Disappearance

► KARMEN + LSND $\nu_e - C \rightarrow \text{limit}$

ν_{μ} Disappearance

- ▶ MiniBooNE + SciBooNE $(\nu_{\mu}, \bar{\nu}_{\mu}) \rightarrow \text{limit}$
- ▶ MINOS (FNAL NuMI) \rightarrow limit
- ▶ CCFR (FNAL, 1985), CDHS (CERN, 1984) \rightarrow limit
- ▶ IceCube (latest 2016) \rightarrow limit

 $Based \ on \ arxiv: 1609.07803$

Signals & Limits Tension in Measurements

Signals & Limits Tension in Measurements

MiniBooNE 2018 results, arxiv:1805.12028

So What?

Case 0: Moral Imperative

 Hints of BSM physics in several experiments, significant tension in data

Case 1: Long-Baseline Neutrino Physics

- New Physics: Modified survival probabilities, maybe more CP phases
- Systematic: e.g. Low-E background production modeling is poor

Case 2: Neutrinoless Double-Beta Decay, e.g.

- Searches for lepton number violation to determine Dirac/Majorana nature of the neutrino
- Sensitive to $\Gamma^{0\nu} \propto |\Sigma_i U_{ei}^2 m_i|^2$

The Short-Baseline Neutrino Program A Definitive Test of Short-Baseline Oscillations

- ▶ Three liquid argon TPCs in the Fermilab Booster Neutrino Beam
 - ▶ Same argon target, functionally similar detectors
- Definitive test of LSND oscillations using three baselines
- \blacktriangleright Simultaneous ν_{μ} disappearance and $\nu_{\rm e}$ appearance searches

Liquid Argon

Liquid Argon

₩ Brr! 87K

 u_{μ}

Top-down view

LArTPCs provide a detailed view of each neutrino interaction

Run 3469 Event 28734, October 21st, 2015

The Short-Baseline Neutrino Program A Definitive Test of Short-Baseline Oscillations

LAr1-ND (100m) MicroBooNE

T600 (on-axis)

SBND (100 MicroBooNE JE

T600 (on-axis) 22

A Three-Detector Experiment

Leveraging Correlations to Minimize Systematics

LAr1-ND (100m) MicroBooNE T600 (on-axis)

A Three-Detector Experiment

Leveraging Correlations to Minimize Systematics

Detector Modeling & Uncertainties

- Particle propagation (Geant4)
- Electron drift (space charge, diffusion, recombination, electronics response)
- Photon propagation (scintillation yield, detector response, triggering)

Challenges:

- Differences in geometry/acceptance
- Different wire angles × angle-dependent reconstruction efficiencies

Strategies:

- MC samples with detector variations
- Apply full chain to study analysis impact
- Parameterize calibration uncertainties

Space Charge Effect

MICROBOONE-NOTE-1018-PUB
A Three-Detector Experiment

Leveraging Correlations to Minimize Systematics

Interaction Modeling & Uncertainties

- Ongoing efforts to include state-of-the art models, multiple generators
- Updated tunes for deuterium bubble chamber reanalyses
- Integrating Ar cross section measurements into oscillation analysis
- GENIE cross section, hadronization, re
- RPA and Valencia MEC uncertainties
- Alternate FSI models (full vs. effective ⁵
- Alternate MEC models (Valencia vs. e)
- Second class currents, radiative correct

20

ν_e Cross Section Fractional Uncertaintes

Fractional Error Matrix

LAr1-ND uBooNE

T600

ainties

ing)

MicroBooNE

MicroBooNE

Addressing the MiniBooNE Excess

- ▶ Similar baseline to MiniBooNE (470 m)
- ▶ 89 tons active LAr mass
- Taking beam data since October 2015
- Cosmic ray tagger added in 2016

Key Advantages of LAr:

- Detailed imaging of neutrino interactions
- Electron/photon discrimination

 $dE/dx \, e/\gamma$ in ArgoNeut

MicroBooNE Recent Physics Results

CC Inclusive Cross Section

- High efficiency & purity
- Insensitive to hadrons
- Constrains v_e rate
- Exclusive pre-selection

MicroBooNE

Addressing the MiniBooNE Excess

The MiniBooNE Excess

- Extra electrons?
 - Sterile neutrino oscillations?
 - Something else?
- Extra photons?
 - ► $\Delta \rightarrow N\gamma$? π^0 mis-ID? ...?

Q: Data consistent with...

- Models (generator MC)?
- Short-baseline oscillations?
- Extrapolated LEE signal?

Targeting sensitivity to signals extrapolated from MiniBooNE's excess

(See MICROBOONE-NOTE-1043-PUB)

µBooNE

MicroBooNE

Addressing the MiniBooNE Excess

(N.B. using previous MiniBooNE results)

3000

SBND The Short-Baseline Near Detector

The Short-Baseline Near Detector

Detector:

- ▶ 110 m from the BNB target
 - ▶ No oscillation signal expected
- ▶ 112 tons active LAr mass
- Two TPCs sharing a central cathode

Physics Program:

- High statistics BNB event sample
 - Constrains flux and interactions
 - Differential cross sections, many exclusive final states
- Reconstruction and detector development

Process	arxiv:1503.01520			
	ν_{μ} Events (By Final State Topology)			
CC Inclusive		$5,\!212,\!690$		
CC 0 π	$ u_{\mu}N \to \mu + Np$	$3,\!551,\!830$		
	$\cdot \ \nu_{\mu}N \rightarrow \mu + 0p$	$793,\!153$		
	$\cdot \ \nu_{\mu}N \rightarrow \mu + 1p$	2,027,830		
	$\cdot \ \nu_{\mu}N \to \mu + 2p$	$359,\!496$		
	$\cdot \ \nu_{\mu}N \rightarrow \mu + \geq 3p$	$371,\!347$		
CC 1 π^{\pm}	$\nu_{\mu}N \rightarrow \mu + \text{nucleons} + 1\pi^{\pm}$	$1,\!161,\!610$		
$CC \ge 2\pi^{\pm}$	$\nu_{\mu}N \to \mu + \text{nucleons} + \geq 2\pi^{\pm}$	$97,\!929$		
$CC \ge 1\pi^0$	$\nu_{\mu}N \to \mu + \text{nucleons} + \ge 1\pi^0$	497,963		
NC Inclusive		1,988,110		
NC 0 π	$\nu_{\mu}N \rightarrow \text{nucleons}$	$1,\!371,\!070$		
NC 1 π^{\pm}	$\nu_{\mu}N \rightarrow \text{nucleons} + 1\pi^{\pm}$	260,924		
$NC \ge 2\pi^{\pm}$	$\nu_{\mu}N \rightarrow \text{nucleons} + \geq 2\pi^{\pm}$	$31,\!940$		
$NC \ge 1\pi^0$	$\nu_{\mu}N \rightarrow \text{nucleons} + \ge 1\pi^0$	$358,\!443$		
	$\nu_e \ Events$			
CC Inclusive		36798		
NC Inclusive		14351		
Total ν_{μ} and ν_{e} Events	3	7,251,948		

The Short-Baseline Near Detector

Detector:

- ▶ 110 m from the BNB target
 - ▶ No oscillation signal expected
- ▶ 112 tons active LAr mass
- Two TPCs sharing a central cathode

Physics Program:

- ▶ High statistics BNB event sample
 - Constrains flux and interactions
 - Differential cross sections, many exclusive final states
- Reconstruction and detector development

	ology)
	$5,\!212,\!690$
$ u_{\mu}N \rightarrow \mu + Np$	$3,\!551,\!830$
$\nu_{\mu}N \rightarrow \mu + 0p$	$793,\!153$
$\cdot \ \nu_{\mu}N \rightarrow \mu + 1p$	$2,\!027,\!830$
$\cdot \ \nu_{\mu}N \rightarrow \mu + 2p$	$359,\!496$
$\cdot \ \nu_{\mu}N \rightarrow \mu + \geq 3p$	$371,\!347$
$\nu_{\mu}N \rightarrow \mu + \text{nucleons} + 1\pi^{\pm}$	$1,\!161,\!610$
$\nu_{\mu}N \to \mu + \text{nucleons} + \ge 2\pi^{\pm}$	$97,\!929$
$ \nu_{\mu}N \to \mu + \text{nucleons} + \ge 1\pi^0 $	497,963
	1,988,110
$\nu_{\mu}N \rightarrow \text{nucleons}$	$1,\!371,\!070$
$\nu_{\mu}N \rightarrow \text{nucleons} + 1\pi^{\pm}$	260,924
$\nu_{\mu}N \rightarrow \text{nucleons} + \geq 2\pi^{\pm}$	$31,\!940$
$\nu_{\mu}N \rightarrow \text{nucleons} + \ge 1\pi^0$	$358,\!443$
$\nu_e \ Events$	
	36798
	14351
ents	7,251,948
	$\nu_{\mu} Events \ (By \ Final \ State \ Topological V_{\mu}N \rightarrow \mu + Np \\ \cdot \nu_{\mu}N \rightarrow \mu + 0p \\ \cdot \nu_{\mu}N \rightarrow \mu + 1p \\ \cdot \nu_{\mu}N \rightarrow \mu + p \\ \cdot \nu_{\mu}N \rightarrow \mu + p \\ \nu_{\mu}N \rightarrow \mu$

SBND Project Status

- Components arriving at FNAL for assembly
 - Anode (wire) planes and cathode
 - Built at US & UK facilities
- Full TPC electronics & DAQ integration test completed using the LArIAT TPC
- ▶ Full PMT system test at LANL soon
- ▶ Q1 2019: TPC Assembly
- ▶ Q3 2019: Cryogenics installation
- ▶ Q1 2020: Detector commissioning
- ▶ Q3 2020: Physics data taking

SBND The Short-Baseline Near Detector

SBND The Short-Baseline Near Detector

Insert experiment here)

ICARUS The Short-Baseline Far Detector

ICARUS T600

The Short-Baseline Far Detector

- ▶ Far detector for the SBN program
- ▶ 600 m baseline, 476 tons active LAr
- Ran at LNGS 2010 2013
- ▶ Refurbished, upgraded at CERN
- Now being installed at FNAL

ICARUS LArTPC experience

- 1988: ICARUS Liquid Argon Imaging Chamber: A Novel Detector Technology
- ▶ 1994: Study of electron-ion recombination in liquid argon
- ▶ 1995: TPC signal processing using artificial neural networks
- 2004: Design, construction and tests of the ICARUS T600 detector
- 2006: Measurement of through-going particle momentum by means of multiple scattering with the ICARUS T600 TPC
- 2013: Experimental search for the LSND anomaly with the ICARUS detector in the CNGS neutrino beam

and many more! (icarus.lngs.infn.it/publications.php) % f(x) = f(x) - f(x) -

Indiana

Photo: Rich Allen, Ports of Indiana, , icarustrip.fnal.gov

SBN Sensitivity

 $P_{\mu\mu} = 1 - 4(1 - |\boldsymbol{U_{\mu4}}|^2)|\boldsymbol{U_{\mu4}}|^2 \sin^2(1.27\Delta m_{41}^2 L/E)$

Cover the LSND allowed region at 5σ ...

...and search for ν_{μ} disappearance which ν_{e} appearance implies SBN Program Status & Prospects

MicroBooNE

- MiniBooNE low-energy excess, cross sections
- ▶ Running since 2015, leading the way

SBND

- ▶ Near detector, precision cross sections
- Construction phase

ICARUS-T600

- ► Far detector from far away
- Installation phase

The full SBN Program is coming soon, and will definitively address the eV-scale sterile neutrino anomalies, provide unprecedented precision on ν -nucleus interactions, and provide key inputs to the DUNE long-baseline program.

VSBL Oscillation Searches

Physics at Very Short Baselines

- \blacktriangleright Reactor anomaly can be interpreted as a v_e disappearance effect
- ▶ $L/E \sim 1 \text{ m/MeV}$ anomalies
 - \blacktriangleright Reactor antineutrinos at a few MeV \rightarrow oscillations baselines of a few meters

Strategies:

- IBD detectors
- ▶ Very close to a compact source
 - Research reactors, DAR sources
- ▶ Pure sources (e.g. ²³⁵U)
 - Disentangle spectral anomalies
- ▶ Good spatial & energy resolution

Isotope Decay at Rest Physics at Very Short Baselines

Lawrence's 1934 patent drawing for the cyclotron (Wikipedia)

 H_{2}^{+} source feeds a 60 MeV/ amu cyclotron, stripped into proton beam on ⁹Be target.

n captures on 7Li create 8Li

 $^{8}\text{Li}\ \beta$ decay \rightarrow lots of $\overline{\nu}_{e}$

KamLAND

arxiv:1710.09325

Ultra high purity liquid scintillator detector

 $\sigma_E \sim 3\%/\sqrt{E}$ (planned)

IBD $\overline{v}_e(p,n)e^+$ and v_e^-e elastic scattering

Wiggles

Reconstruct events in position and energy

Look for oscillations in L/E

DAEdALUS is a future higher-intensity multi-baseline system, to search for CPV at short baselines

See www.nevis.columbia.edu/daedalus

Conclusions

Symmetry Magazine, 2/2013

- Several anomalies, significant tension in the data
- There is *something* we're missing, sterile neutrinos or neutrino interactions, need to sort it out to move the field forward

- The SBN program will make a definitive test of the LSND-like anomalies
 - Three imaging LArTPCs at three baselines
 - ▶ Intense neutrino beam at Fermilab BNB
- MicroBooNE is running now, producing cross section measurements and studying the MiniBooNE LEE
- ▶ SBND and ICARUS are coming, full program in 2020
- Complementary VSBL experiments are meanwhile probing the sterile landscape

SBN

Program

Standard Model

Three-Neutrino Oscillations

In a two-neutrino approximation, the $survival\ probability$

$$P_{ee} = 1 - P_{ea} = \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 \ [eV^2] \ L \ [km]}{E_{\nu} \ [GeV]}\right)$$

Where $\Delta m^2 \equiv m_2^2 - m_1^2$ and θ are constants of nature, and we control L and E_{ν} .

The Short-Baseline Near Detector

The Short-Baseline Near Detector

Outfitted the pit with scintillator detectors to look at muons from the dirt

A first look at the neutrino beam

The Short-Baseline Near Detector

Outfitted the pit with scintillator detectors to look at muons from the dirt

A first look at the neutrino beam

Holte

Fermi National Accelerator Laboratory Batavia, IL

Wilson Hall

172Rd

Ramsey Auditorium

Carlo Carlo

Google

10

GieseRd

Indian Greek Rd

GleseRd

VSBL Experiments

Physics at Very Short Baselines

Experiment	$ P_{th} [MW]$	L[m]	depth [mwe]	m[t]	technique	S/B
Nucifer	70	7	12	0.8	Gd-LS	<1
Neos	2700	25	20	1	Gd-LS	22
DANSS	3000	9-12	50	0.9	Gd-PS	~ 20
Neutrino-4	100	6-11	5 - 10	1.5	Gd-LS	<1
Stereo	57	9-11	10	1.7	Gd-LS	>1
Solid	100	6-11	10	1.6	⁶ Li-PS	$\sim\!3$
Prospect	85	7 - 12	~ 5	3	⁶ Li-LS	>1

C. Buck, NuPhys2016, arxiv:1704.08885

MicroBooNE Event Reconstruction in LArTPCs

Pandora Path

- Pattern recognition using particle flow
- Pandora development toolkit
 - ▶ Eur. Phys. J C 75, 439 (2015)

Deep Learning Path

- Novel image classification approaches
- Focused on $1\ell 1p$ final states
- arxiv:1808.07269, JINST 12, P03011 (2017)

SBND The Short-Baseline Near Detector

ICARUS The Short-Baseline Far Detector

PROSPECT

A VSBL Example

- ▶ Detector close to a 99% ²³⁵U research reactor (HFIR at ORNL)
- Baselines of 7-12 m and 16-20 m
- Segmented ⁶Li doped liquid scintillator
- Addresses reactor flux anomaly and sterile neutrino oscillations

Sub-segment conceptual design

HFIR: 80MW U-235 Core