Standard Model or Standard Theory? The many ways Beyond the SM

R. Barbieri
CMS School, Pisa, January 2019

Some general introductory remarks
The potential of precision at LHC
More than one (motivated) scalar (if time permits)

The SM Lagrangian

 (since 1973 in its full content)$$
\begin{aligned}
\mathcal{L}_{\sim S M}= & -\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu v}+i \bar{\psi} \not \supset \psi & & (\imath 1975-2000) \\
& +\left|D_{\mu} h\right|^{2}-V(h) & & (\imath 1990-2012-\text { now }) \\
& +\psi_{i} \lambda_{i j} \psi_{j} h+h . c . & & (\sim 2000-\text { now })
\end{aligned}
$$

In () the approximate dates of the experimental confirmation of the various lines (at different levels)

The synthetic nature of PP exhibited

All of Particle Physics in 1 page

1. Symmetry group $L \times \mathcal{G}$

$$
\begin{aligned}
& L=\text { Lorentz (space-time) } \\
& \mathcal{G}=S U(3) \times S U(2) \times U(1) \quad \text { (local) }
\end{aligned}
$$

2. Particle content (rep.s of $L \times \mathcal{G}$)

	h	Q	L	u	d	e
Lorentz	0	$1 / 2_{L}$	$1 / 2_{L}$	$1 / 2_{R}$	$1 / 2_{R}$	$1 / 2_{R}$
$S U(3)$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$
$S U(2)$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$U(1)$	$-1 / 2$	$1 / 6$	$-1 / 2$	$2 / 3$	$-1 / 3$	-1

3. All "operators" (products of $\Phi, \partial_{\mu} \Phi$) in \mathcal{L} of dimension ≤ 4

Problems of (questions for) the SM

0. Which rationale for matter quantum numbers?
$\left|Q_{p}+Q_{e}\right|<10^{-21} e$
1. Phenomena unaccounted for
neutrino masses matter-antimatter asymmetry Dark matter inflation?
2. Why $\theta \lesssim 10^{-10}$? $\theta G_{\mu \nu} \tilde{G}^{\mu \nu}$

Axions
3. $\mathcal{O}_{i}: d\left(\mathcal{O}_{i}\right) \leq 4$ only?
neutrino masses Are the protons forever? Gravity
4. Lack of calculability (a euphemism)
\Rightarrow the hierarchy problem the flavour puzzle

The hierarchy problem, once again Can we compute the Higgs mass/vev in terms of some fundamental dynamics?

NOT in the SM

The standard reaction
Look for top "partners", J=0 or $1 / 2$, coloured or uncoloured,
with a mass not far from a TeV, capable to cutoff the Λ^{2} divergence

Single production deserves attention

 (although NOT generically present)

The flavour paradox $\quad \lambda_{i j} \Psi_{i} \Psi_{j}$

As opposed to the hard time in trying to explain the spectrum and the mixing of quarks and leptons

Not easy to improve without observing deviations from the SM
(See below)

The many different directions in BSM

 (for an audience of philosophers, sic)
1. Explore the space of theories

- Address a specific problem, theoretical or experimental E.g.: Supersymmetry, DM axions, Baryogenesis, ...
- Expand the set of consistent and potentially "true" theories E.g.: Supersymmetry, conformal field theory, string theory, ...

2. Explore the space of observables

- Test a "true" theory
E.g.: Precision tests of the SM
- Extend the explorable territory
E.g.: Where can one look for "DM"? Are there new light particles?

The emphasis on the specific direction is time dependent
To concentrate now on a single direction is very dangerous

The potential of precision at LHC

- Higgs couplings

$$
\mathcal{L}=-\lambda k_{\lambda} H^{4}+g_{f} k_{f} H \bar{f} f+g_{V} k_{V} V_{\mu} H^{+} \partial_{\mu} H
$$

- ElectroWeak observables

Pole observables: $m_{W}, \sin \theta_{e f f}^{l}$
Drell-Yan $l^{+} l^{-}, l \nu$ at high $m_{l l}, m_{l l}^{T}$
DiBosons $W h, Z h, W Z, W W$

- Flavour observables

Testing the FCNC loops
Lepton Flavour Violation
The role of flavour in BSM

$$
V=\mu^{2} H^{2}+\lambda H^{4}
$$

$$
\lambda=\frac{G_{\mu}}{\sqrt{2}} m_{h}^{2}+\text { rad. corr. } \quad=0.12
$$

Can one measure it directly?
CMS-PAS-FTR-16-002

CMS Projection $\sqrt{s}=13 \mathrm{TeV} \quad \mathrm{SM}$ gg $\rightarrow \mathrm{HH}$

As difficult as important large deviations concevable in BSM

Higgs couplings

$$
\mathcal{L}=-\lambda k_{\lambda} H^{4}+g_{f} k_{f} H \bar{f} f+g_{V} k_{V} V_{\mu} H^{+} \partial_{\mu} H
$$

Direct versus indirect searches

$$
p p \rightarrow \rho \rightarrow W Z \quad \xi=\frac{v^{2}}{f^{2}}=g_{\rho}^{2} \frac{v^{2}}{m_{\rho}^{2}}
$$

Collider	Energy	Luminosity	$\xi[1 \sigma]$
LHC	14 TeV	$300 \mathrm{fb}^{-1}$	$6.6-11.4 \times 10^{-2}$
LHC	14 TeV	$3 \mathrm{ab}^{-1}$	$4-10 \times 10^{-2}$
ILC	250 GeV	$250 \mathrm{fb}^{-1}$	$4.8-7.8 \times 10^{-3}$
	+500 GeV	$500 \mathrm{fb}^{-1}$	
CLIC	350 GeV	$500 \mathrm{fb}^{-1}$	
	+1.4 TeV	$1.5 \mathrm{ab}^{-1}$	2.2×10^{-3}
	+3.0 TeV	$2 \mathrm{ab}^{-1}$	
TLEP	240 GeV	$10 \mathrm{ab}^{-1}$	2×10^{-3}
	+350 GeV	$2.6 \mathrm{ab}^{-1}$	

Thamm, Torre, Wulzer 2015

The potential of precision at LHC

- Higgs couplings

$$
\mathcal{L}=-\lambda k_{\lambda} H^{4}+g_{f} k_{f} H \bar{f} f+g_{V} k_{V} V_{\mu} H^{+} \partial_{\mu} H
$$

- ElectroWeak observables

Pole observables: $m_{W}, \sin \theta_{e f f}^{l}$
Drell-Yan $l^{+} l^{-}, l \nu$ at high $m_{l l}, m_{l l}^{T}$
DiBosons $W h, Z h, W Z, W W$

- Flavour observables

Testing the FCNC loops
Lepton Flavour Violation
The role of flavour in BSM

Comparing direct measurements with virtual effects

Blue $=$ prediction of m_{t}, M_{W} by fitting "pole observables" in the SM, with crucial inclusion of loop effects
Green $=$ direct measurements of m_{t}, M_{W}

Constraints from pole observables

Standard parameters: \hat{S}, \hat{T} or $\epsilon_{3}, \epsilon_{1}$

In a composite Higgs picture:
$\Delta \hat{S}=\frac{g^{2}}{96 \pi^{2}} \xi \log \left(\frac{\Lambda}{m_{h}}\right)+\frac{m_{W}^{2}}{m_{\rho}^{2}}+\alpha \frac{g^{2}}{16 \pi^{2}} \xi$,
$\Delta \hat{T}=-\frac{3 g^{\prime 2}}{32 \pi^{2}} \xi \log \left(\frac{\Lambda}{m_{h}}\right)+\beta \frac{3 y_{t}^{2}}{16 \pi^{2}} \xi$,

Thamm, Torre, Wulzer 2015

Nominally the limit on ξ, or on f better than from Higgs couplings, but the fudge factors α, β...

Drell-Yan $l^{+} l^{-}, l \nu$ at high $m_{l l}, m_{l l}^{T}$

$$
p p \rightarrow l^{+} l^{-}, l \nu
$$

Farina et al 2016

$$
\mathcal{L}=g_{V} V_{\mu}^{a}\left(f \tau^{a} \gamma_{\mu} f+i H^{+} D_{\mu} H\right)
$$

On some observables (W, Y) LEP beaten by LHC (if suitable precision pursued)

DiBoson differential cross section with suitable angular analyses

$$
\begin{aligned}
& \delta A\left(\bar{q} q^{\prime} \rightarrow W Z\right) \approx a_{q}^{(3)} E^{2} \\
& a_{q}^{(3)}=\frac{g^{2}}{M^{2}} \div \frac{16 \pi^{2}}{M^{2}} \quad \mathcal{L}=V_{\mu}^{a}\left(g_{f} \bar{f} \tau^{a} \gamma_{\mu} f+g_{H} i H^{+} D_{\mu} H\right)
\end{aligned}
$$

Franceschini et al 2018

The potential of precision at LHC

- Higgs couplings

$$
\mathcal{L}=-\lambda k_{\lambda} H^{4}+g_{f} k_{f} H \bar{f} f+g_{V} k_{V} V_{\mu} H^{+} \partial_{\mu} H
$$

- ElectroWeak observables

Pole observables: $m_{W}, \sin \theta_{e f f}^{l}$
Drell-Yan $l^{+} l^{-}, l \nu$ at high $m_{l l}, m_{l l}^{T}$
DiBosons $W h, Z h, W Z, W W$

- Flavour observables

Testing the FCNC loops
Lepton Flavour Violation
The role of flavour in BSM

FCNC versus EWPT: a significant comparison

$\epsilon_{1}^{S M}=5.21 \cdot 10^{-3}, \epsilon_{3}^{S M}=5.28 \cdot 10^{-3}$

measures EW loops at about 20\% level

A future facility (FCCee, ...) could go to 2% level

measures FCNC loops at about 20\% level

An "aggressive" flavour program could go to 2% level

Several totally clean observables

$$
a_{\mathrm{sl}}^{q}=\frac{\Gamma\left(\bar{B}_{q}^{0} \rightarrow f\right)-\Gamma\left(B_{q}^{0} \rightarrow \bar{f}\right)}{\Gamma\left(\bar{B}_{q}^{0} \rightarrow f\right)+\Gamma\left(B_{q}^{0} \rightarrow \bar{f}\right)} \approx \frac{\Delta \Gamma_{q}}{\Delta M_{q}} \tan \phi_{12}^{q}
$$

and many others controllable by multiple channel measurements (especially in the charm case)

Lepton Flavour Violation

$R_{K^{(*)}}=\frac{B R\left(B \rightarrow K^{(*)} \mu \mu\right)}{B R\left(B \rightarrow K^{(*)} e e\right)}$

Observable	Current LHCb	LHCb 2025	Upgrade II
$\mathbf{E W}$ Penguins			
$R_{K}\left(1<q^{2}<6 \mathrm{GeV}^{2} c^{4}\right)$	$0.1[4]$	0.025	0.007
$R_{K^{*}}\left(1<q^{2}<6 \mathrm{GeV}^{2} c^{4}\right)$	$0.1[5]$	0.031	0.008
$\boldsymbol{b} \rightarrow \boldsymbol{c} \boldsymbol{l}^{-} \overline{\boldsymbol{\nu}_{l}}$ LUV studies			
$R\left(D^{*}\right)$	$0.026[15,16]$	0.0072	0.002
$R(J / \psi)$	$0.24[17]$	0.071	0.02

A perfect example of complementarity

$b \rightarrow c \tau \nu$

$b \rightarrow s \mu \mu$
then

The only unknown is

Buttazzo et al 2016

Which attitude towards flavour in BSM?

1. Flavour physics confined to high energy
(the prevailing lore)

$$
\mathcal{L}=\mathcal{L}_{S M}+\Sigma_{i}^{\alpha} \frac{C_{i}^{\alpha}}{\Lambda_{i}^{\alpha}}(\bar{f} f \bar{f} f)_{i}^{\alpha}
$$

$i=1, \ldots, 5=$ different Lorentz structures

2. New physics at the TeV scale hidden by
a suitable (approximate) flavour symmetry
If so, a special role played by the third generation, special because of its masses and (in the quarks) its small mixing with the first two generations $10^{-(2 \div 3)}$

An "Extreme Flavour" experiment?

Vagnoni - SNS, 7-10 Dec 2014

- Currently planned experiments at the HL-LHC will only exploit a small fraction of the huge rate of heavyflavoured hadrons produced
- ATLAS/CMS: full LHC integrated luminosity of $3000 \mathrm{fb}^{-1}$, but limited efficiency due to lepton high p_{T} requirements
- LHCb: high efficiency, also on charm events and hadronic final states, but limited in luminosity, $50 \mathrm{fb}^{-1}$ vs $3000 \mathrm{fb}^{-1}$
- Would an experiment capable of exploiting the full HLLHC luminosity for flavour physics be conceivable?
- Aiming at collecting O(100) times the LHCb upgrade luminosity $\rightarrow 10^{14} \mathrm{~b}$ and $10^{15} \mathrm{c}$ hadrons in acceptance at $\mathrm{L}=10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

$$
\begin{gathered}
\text { Motivation: test CKM (FCNC loops) } \\
\text { from } \simeq 20 \% \text { to } \approx 1 \%
\end{gathered}
$$

More than one (motivated) scalar (MSSM, NMSSM,etc)

- "Inert" doublet Dark Matter: H_{1}, H_{2}

$$
H_{2}: \quad<H_{2}>=0, \quad H_{2} \bar{f} f \text { forbidden }
$$

The lightest member of H_{2}, if neutral, is a DM candidate

- "Singlet-Catalysed" EW phase transition: H,S

$$
\Delta V=\lambda_{1} M\left(H^{+} H\right) S+\lambda_{2}\left(H^{+} H\right) S^{2}
$$

Can indice a first order phase transition, crucial to Baryogenesis

- "Twin" Higgs: H, H^{\prime}

$$
\begin{aligned}
& \mathbf{H}^{\prime}=\text { doublet of a "twin" } \operatorname{SU}(2) \\
& V\left(H, H^{\prime}\right) \rightarrow V(\mathcal{H}), \quad|\mathcal{H}|^{2}=|H|^{2}+\left|H^{\prime}\right|^{2} \\
& h \text { is a pseudo-Goldstone }
\end{aligned}
$$

- "Inert" doublet Dark Matter: H_{1}, H_{2}

$h_{1}=$ Dark Matter

monojets

Cacciapaglia et al 2016

$$
\begin{gathered}
10^{2} \\
10
\end{gathered}
$$

- "Singlet-Catalysed" EW phase transition: H,S

$$
p p \rightarrow h_{2} \rightarrow h_{1} h_{1} \rightarrow b \bar{b} \gamma \gamma, \tau \bar{\tau} \tau \bar{\tau}
$$

- "Twin" Higgs: H, H^{\prime}

$$
\sigma\left(p p \rightarrow h^{\prime}\right) \approx \xi \sigma\left(p p \rightarrow h_{S M}\left(m=m_{h^{\prime}}\right)\right) \text { via a top loop }
$$

Neglecting phase space

$$
\frac{\Gamma_{L}}{\Gamma_{L}+\Gamma_{T}} \rightarrow 1
$$

Summary

1. To turn the SM into a ST still premature
2. BSM more relevant then ever, though in more diversified directions than 10 years ago, rightly so
3. A significant discovery potential in precision at LHC

- Higgs couplings
- Extended EW precision tests
- Flavour observables
highly complementary between themselves and with direct searches

4. A pending question: why a single scalar?

Backup on B-anomalies

general caveats

$$
R_{D^{(*)}}=\frac{B R\left(B \rightarrow D^{(*)} \tau \nu\right)}{B R\left(B \rightarrow D^{(*)} l \nu, l=\mu, e\right)} \quad R_{K^{(*)}}=\frac{B R\left(B \rightarrow K^{(*)} \mu \mu\right)}{B R\left(B \rightarrow K^{(*)} e e\right)}
$$

Difficult and/or statistically limited experiments
Lepton Flavour Violation never seen before in charged leptons $B R\left(K_{L} \rightarrow \mu e\right)<4.7 \cdot 10^{-12}$

No "mediator" seen in LHC searches

In case one wants to see them correlated: $b \rightarrow c l \nu$ tree level, $b \rightarrow s l l$ loop level

The need of a "mediator"

$\frac{R_{D^{(*)}}}{R_{D^{(*)}}^{S M}}=1.237 \pm 0.053 \quad$ is a deviation from the SM at about 20% level in $b \rightarrow c \tau \nu$

Need to interfere with

From

need $\quad \Lambda \approx 500 \mathrm{GeV}\left(\frac{\mathcal{V}_{c b} \mathcal{V}_{\tau \nu}}{V_{c b}}\right)^{1 / 2}$

need $\quad \frac{g}{m} \approx \frac{2}{T e V}\left(\frac{V_{c b}}{\mathcal{V}_{c b} \mathcal{V}_{\tau \nu}}\right)^{1 / 2}$

Can one make sense of a vector leptoquark?

$$
V_{\mu}^{a}\left(\bar{q}_{L}^{a} \gamma_{\mu} l_{L}\right)=V_{\mu}^{a}\left(\bar{u}_{L}^{a} \gamma_{\mu} \nu_{L}+\bar{d}_{L}^{a} \gamma_{\mu} e_{L}\right)
$$

Pati-Salam SU(4): L as a fourth colour

Back to $K_{L} \rightarrow \mu e$

$\left(s^{a}, \mu\right)$ and ($\left.d^{a}, e\right)$ cannot live in the same $\operatorname{SU}(4)$ quartet

Way out:
Consider heavy $\quad\left(Q^{a}, L\right)_{\text {Dirac }}$ with $\quad V_{\mu}^{a}\left(\bar{Q}_{L}^{a} \gamma_{\mu} L_{L}\right)$ and mix them appropriately with standard q_{L}, l_{L}
(not trivial if $\mathrm{SU}(4)$ is a standard gauge group)

Observed anomalies

$b \rightarrow c l \nu$

$$
\begin{gathered}
\frac{R_{D^{(*)}}}{R_{D(*)}^{S M}}=1.237 \pm 0.053 \\
\left(\frac{\hat{g}_{G}^{2}}{m_{G}^{2}}+\frac{\hat{g}_{\rho}^{2}}{m_{\rho}^{2}}\right) s_{l 3}^{2} s_{q 3}^{2} \approx 5 / \mathrm{TeV}^{2}
\end{gathered}
$$

$b \rightarrow s \mu \mu$

$$
\begin{aligned}
\frac{R_{K^{(*)}}}{R_{K^{(*)}}^{S M}} & =0.70 \pm 0.10 \\
\frac{s_{q 2} s_{l 2}}{s_{q 3} s_{l 3}} \frac{E_{\mu 3}}{V_{t s}} & \sim 5 \cdot 10^{-3}
\end{aligned}
$$

Low energy observables

$$
\frac{s_{q 2} s_{l 2}}{s_{q 3} s_{l 3}} \frac{E_{\mu 3}}{V_{t s}} \sim 5 \cdot 10^{-3}
$$

$\cdot \mathrm{b} \rightarrow \mathrm{c}(\mathrm{u}) l v$
$\mathrm{BR}\left(\mathrm{B} \rightarrow \mathrm{D}^{*} \tau v\right) / \mathrm{BR}_{\mathrm{SM}}=\mathrm{BR}(\mathrm{B} \rightarrow \mathrm{D} \tau v) / \mathrm{BR}_{\mathrm{SM}}=\mathrm{BR}\left(\Lambda_{\mathrm{b}} \rightarrow \Lambda_{\mathrm{c}} \tau v\right) / \mathrm{BR}_{\mathrm{SM}}$

$$
=\mathrm{BR}(\mathrm{~B} \rightarrow \pi \tau v) / \mathrm{BR}_{\mathrm{SM}}=\mathrm{BR}\left(\Lambda_{\mathrm{b}} \rightarrow \mathrm{p} \tau v\right) / \mathrm{BR}_{\mathrm{SM}}=\mathrm{BR}\left(\mathrm{~B}_{\mathrm{u}} \rightarrow \tau v\right) / \mathrm{BR}_{\mathrm{SM}}
$$

$$
\searrow \hat{\rho}_{\mu_{-}}^{L} \hat{\rho}_{\mu}^{R}
$$

$$
\Delta C=2
$$

$$
\hat{g}_{\mu} \hat{X}_{\mu} \hat{B}_{\mu}
$$

$$
\frac{s_{q 2}^{2}}{s_{q 3} s_{l 3}} \lesssim 10^{-3}
$$

$$
\tau \rightarrow 3 \mu
$$

$$
\tau \rightarrow \mu \gamma
$$

$$
\begin{gathered}
E_{\mu 3}\left(\frac{s_{l 2}^{2}}{s_{l 3}^{2}}+\left|E_{\mu 3}\right|^{2}\right) \lesssim 3 \cdot 10^{-3} \\
\left(A_{G}+\left(\frac{s_{l 3}}{s_{q 3}}\right)^{2} A_{\rho}\right) E_{\mu 3} \lesssim 0.1 \\
\frac{s_{q 2} s_{l 2}}{s_{q 3} s_{l 3}} \lesssim 10^{-2}
\end{gathered}
$$

$\Delta B=2$

Current status

$$
\frac{s_{q 3}}{s_{l 3}} D_{s 3} \lesssim 2 \cdot 10^{-3}
$$

(against $\quad V_{t s} \approx U_{t 2}+D_{s 3}=4 \cdot 10^{-2}$)

Direct searches of the heavy vectors

Leptoquarks \hat{V}_{μ} pair produced:

$$
\begin{gathered}
g g \rightarrow \hat{V}_{\mu}^{+} \hat{V}_{\mu}^{-} \\
\hat{V}_{\mu} \rightarrow t \nu, b \tau
\end{gathered}
$$

\hat{V}_{μ} exchanged in the t-channel: $b \bar{b} \rightarrow \tau \bar{\tau}$
Single \hat{V}_{μ} production $g b \rightarrow \hat{V}_{\mu} \tau$
All other vectors but $\hat{\rho}_{\mu}^{R \pm}: \quad \hat{G}_{\mu}^{\alpha}, \hat{B}_{\mu}, \hat{\rho}_{\mu}^{L a}, \hat{\rho}_{\mu}^{R 3}, \hat{X}_{\mu}$ couple to the light fermions by $F-f$ mixing (mostly f_{3}) and, flavour universally, by vector mixing

$$
\begin{aligned}
& \frac{\Gamma_{\hat{G} \rightarrow t \bar{t}}}{m_{G}} \approx \frac{\Gamma_{\hat{G} \rightarrow b \bar{b}}}{m_{G}} \approx \frac{\hat{g}_{G}^{2} s_{q 3}^{4}}{48 \pi} \\
& \frac{\Gamma_{\hat{G} \rightarrow u \bar{u}}}{m_{G}} \approx \frac{\Gamma_{\hat{G} \rightarrow d \bar{d}}}{m_{G}} \approx \frac{g_{3}^{4}}{24 \pi g_{G}^{2}}
\end{aligned}
$$

$$
g g \rightarrow \hat{V}_{\mu}^{+} \hat{V}_{\mu}^{-} \rightarrow\left(t \bar{\nu}_{\tau}\right)\left(\bar{t} \nu_{\tau}\right)
$$

$u \bar{u}, d \bar{d}, b \bar{b} \rightarrow \hat{G} \rightarrow t \bar{t}, b \bar{b}, j j$
coupling $\left.\hat{g}_{G} s^{2}\right|_{\text {fit }} \quad \hat{g}_{G} s_{q 3} s_{l 3}=2 \frac{m_{G}}{T e V}$

