# Standard Model or Standard Theory? The many ways Beyond the SM

R. Barbieri CMS School, Pisa, January 2019

Some general introductory remarks

The potential of precision at LHC

More than one (motivated) scalar (if time permits)

The SM Lagrangian  
(since 1973 in its full content)  
$$\mathcal{L}_{\sim SM} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} + i\bar{\psi} \not D\psi \quad (_{\sim}1975-2000)$$
$$+ |D_{\mu}h|^2 - V(h) \qquad (_{\sim}1990-2012\text{-now})$$
$$+ \psi_i \lambda_{ij} \psi_j h + h.c. \qquad (_{\sim}2000\text{-now})$$

In () the approximate dates of the experimental confirmation of the various lines (at different levels)

The synthetic nature of PP exhibited

# All of Particle Physics in 1 page

1. Symmetry group  $L \times G$ 

L = Lorentz (space-time) $\mathcal{G} = SU(3) \times SU(2) \times U(1)$  (local)

2. Particle content (rep.s of  $L \times G$ )

|         | h    | Q       | L       | u         | d         | e         |
|---------|------|---------|---------|-----------|-----------|-----------|
| Lorentz | 0    | $1/2_L$ | $1/2_L$ | $1/2_{R}$ | $1/2_{R}$ | $1/2_{R}$ |
| SU(3)   | 1    | 3       | 1       | 3         | 3         | 1         |
| SU(2)   | 2    | 2       | 2       | 1         | 1         | 1         |
| U(1)    | -1/2 | 1/6     | -1/2    | 2/3       | -1/3      | -1        |

3. All "operators" (products of  $\Phi, \partial_{\mu} \Phi$ ) in  $\mathcal{L}$  of dimension  $\leq 4$ 



The hierarchy problem, once again Can we compute the Higgs mass/vev in terms of some fundamental dynamics?

NOT in the SM

$$\int_{0}^{t} \frac{dy_{t}^{2}}{4\pi^{2}} + \frac{h}{2} \int_{0}^{t} \frac{y_{t}^{2}}{32\pi^{2}} + \frac{gg^{2}}{32\pi^{2}} \Lambda_{g}^{2} - \frac{3g'^{2}}{32\pi^{2}} \Lambda_{g}'^{2}$$

## The standard reaction

Look for top "partners", J=0 or 1/2, coloured or uncoloured, with a mass not far from a TeV, capable to cutoff the  $\Lambda^2$  divergence

# Single production deserves attention

(although NOT generically present)



## The flavour paradox $\lambda_{ij}\Psi_i\Psi_j$



As opposed to the hard time in trying to explain the spectrum and the mixing of quarks and leptons

Not easy to improve without observing deviations from the SM (See below)

# The many different directions in BSM

(for an audience of philosophers, sic)

- 1. Explore the space of theories
- Address a specific problem, theoretical or experimental E.g.: Supersymmetry, DM axions, Baryogenesis, ...
- Expand the set of consistent and potentially "true" theories E.g.: Supersymmetry, conformal field theory, string theory, ...

#### 2. Explore the space of observables

- Test a "true" theory

E.g.: Precision tests of the SM

- Extend the explorable territory
  - E.g.: Where can one look for "DM"? Are there new light particles?

The emphasis on the specific direction is time dependent To concentrate now on a single direction is very dangerous

## The potential of precision at LHC

#### Higgs couplings

 $\mathcal{L} = -\lambda k_{\lambda} H^4 + g_f k_f H \bar{f} f + g_V k_V V_{\mu} H^+ \partial_{\mu} H$ 

- ElectroWeak observables

Pole observables:  $m_W, sin\theta_{eff}^l$ Drell-Yan  $l^+l^-, l\nu$  at high  $m_{ll}, m_{ll}^T$ DiBosons Wh, Zh, WZ, WW

- Flavour observables

Testing the FCNC loops Lepton Flavour Violation The role of flavour in BSM



## **Higgs couplings** $\mathcal{L} = -\lambda k_{\lambda} H^{4} + g_{f} k_{f} H \bar{f} f + g_{V} k_{V} V_{\mu} H^{+} \partial_{\mu} H$



#### Direct versus indirect searches

$$pp \to \rho \to WZ$$

$$\xi = \frac{v^2}{f^2} = g_{\rho}^2 \frac{v^2}{m_{\rho}^2}$$



## The potential of precision at LHC

- Higgs couplings

 $\mathcal{L} = -\lambda k_{\lambda} H^4 + g_f k_f H \bar{f} f + g_V k_V V_{\mu} H^+ \partial_{\mu} H$ 

- ElectroWeak observables

Pole observables:  $m_W, sin\theta_{eff}^l$ Drell-Yan  $l^+l^-, l\nu$  at high  $m_{ll}, m_{ll}^T$ DiBosons Wh, Zh, WZ, WW

- Flavour observables

Testing the FCNC loops Lepton Flavour Violation The role of flavour in BSM

#### Comparing direct measurements with virtual effects



Blue = prediction of  $m_t, M_W$  by fitting "pole observables" in the SM, with crucial inclusion of loop effects

Green = direct measurements of  $m_t, M_W$ 

#### Constraints from pole observables

#### Standard parameters: $\hat{S}, \hat{T}$ or $\epsilon_3, \epsilon_1$



In a composite Higgs picture:





Nominally the limit on  $\xi$ , or on f better than from Higgs couplings, but the fudge factors  $\alpha, \beta$  ...



Υ×10<sup>4</sup>

-15

-15

-5

0

W×10<sup>4</sup>

-10



10

15

5

0.0

10

M in TeV

30

50

5

3

On some observables (W,Y) LEP beaten by LHC (if suitable precision pursued)

#### DiBoson differential cross section with suitable angular analyses



Franceschini et al 2018

## The potential of precision at LHC

- Higgs couplings

 $\mathcal{L} = -\lambda k_{\lambda} H^4 + g_f k_f H \bar{f} f + g_V k_V V_{\mu} H^+ \partial_{\mu} H$ 

- ElectroWeak observables

Pole observables:  $m_W, sin\theta_{eff}^l$ Drell-Yan  $l^+l^-, l\nu$  at high  $m_{ll}, m_{ll}^T$ DiBosons Wh, Zh, WZ, WW

- Flavour observables

Testing the FCNC loops Lepton Flavour Violation The role of flavour in BSM

## FCNC versus EWPT: a significant comparison





#### Several totally clean observables



and many others controllable by multiple channel measurements (especially in the charm case)

## Lepton Flavour Violation



| Observable                                        | Current LHCb   | LHCb 2025 | Upgrade II |
|---------------------------------------------------|----------------|-----------|------------|
| EW Penguins                                       |                |           |            |
| $\overline{R_K (1 < q^2 < 6 \mathrm{GeV}^2 c^4)}$ | 0.1 [4]        | 0.025     | 0.007      |
| $R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$        | 0.1 [5]        | 0.031     | 0.008      |
| $b \to c \ell^- \bar{\nu_l}$ LUV studies          |                |           |            |
| $\overline{R(D^*)}$                               | 0.026 [15, 16] | 0.0072    | 0.002      |
| $R(J/\psi)$                                       | 0.24 [17]      | 0.071     | 0.02       |

## A perfect example of complementarity









## Which attitude towards flavour in BSM?

1. Flavour physics confined to high energy

(the prevailing lore)

$$\mathcal{L} = \mathcal{L}_{SM} + \Sigma_i^{\alpha} \frac{C_i^{\alpha}}{\Lambda_i^{\alpha}} (\bar{f}f\bar{f}f)_i^{\alpha}$$

i = 1,...,5 = different Lorentz structures



# 2. New physics at the TeV scale hidden by a suitable (approximate) flavour symmetry

If so, a special role played by the third generation, special because of its masses and (in the quarks) its small mixing with the first two generations  $10^{-(2\div3)}$ 

## An "Extreme Flavour" experiment?

Vagnoni – SNS, 7–10 Dec 2014

- Currently planned experiments at the HL-LHC will only exploit a small fraction of the huge rate of heavyflavoured hadrons produced
  - ATLAS/CMS: full LHC integrated luminosity of 3000 fb<sup>-1</sup>, but limited efficiency due to lepton high p<sub>T</sub> requirements
  - LHCb: high efficiency, also on charm events and hadronic final states, but limited in luminosity, 50 fb<sup>-1</sup> vs 3000 fb<sup>-1</sup>
- Would an experiment capable of exploiting the full HL-LHC luminosity for flavour physics be conceivable?
  - Aiming at collecting O(100) times the LHCb upgrade luminosity  $\rightarrow 10^{14}$  b and  $10^{15}$  c hadrons in acceptance at L=10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup>

Motivation: test CKM (FCNC loops) from  $\approx$  20% to  $\lesssim$  1%

#### More than one (motivated) scalar (MSSM, NMSSM, etc)

- "Inert" doublet Dark Matter:  $H_1, H_2$ 

$$H_2: \quad < H_2 >= 0, \quad H_2 \overline{f} f$$
 forbidden

The lightest member of  $H_2$ , if neutral, is a DM candidate

- "Singlet-Catalysed" EW phase transition: H, S

$$\Delta V = \lambda_1 M (H^+ H) S + \lambda_2 (H^+ H) S^2$$

Can indice a first order phase transition, crucial to Baryogenesis

– "Twin" Higgs: H, H'

H' = doublet of a "twin" SU(2)  $V(H, H') \rightarrow V(\mathcal{H}), \quad |\mathcal{H}|^2 = |H|^2 + |H'|^2$ h is a pseudo-Goldstone



#### - "Singlet-Catalysed" EW phase transition: H, S



Kotwal et al 2016

#### - "Twin" Higgs: H, H'



# Summary

1. To turn the SM into a ST still premature

- 2. BSM more relevant then ever, though in more diversified directions than 10 years ago, rightly so
- 3. A significant discovery potential in precision at LHC
  - Higgs couplings
  - Extended EW precision tests
  - Flavour observables

highly complementary between themselves and with direct searches

4. A pending question: why a single scalar?

# Backup on B-anomalies

## general caveats

$$R_{D^{(*)}} = \frac{BR(B \to D^{(*)}\tau\nu)}{BR(B \to D^{(*)}l\nu, l = \mu, e)} \qquad R_{K^{(*)}} = \frac{BR(B \to K^{(*)}\mu\mu)}{BR(B \to K^{(*)}ee)}$$

Difficult and/or statistically limited experiments

Lepton Flavour Violation never seen before in charged leptons  $BR(K_L \rightarrow \mu e) < 4.7 \cdot 10^{-12}$ 

No "mediator" seen in LHC searches

In case one wants to see them correlated:  $b \rightarrow c \ l \nu$  tree level,  $b \rightarrow s \ l l$  loop level



 $rac{R_{D^{(*)}}}{R_{D^{(*)}}^{SM}}=1.237\pm0.053$  is a deviation from the SM at about 20% level in b o c au
u

Need to interfere with



From









need  $\frac{g}{m} \approx \frac{2}{TeV} \left(\frac{V_{cb}}{V_{cb}V_{cb}}\right)^{1/2}$ 

#### Can one make sense of a vector leptoquark?



#### Pati-Salam SU(4): L as a fourth colour



- B, Isidori, Pattori, Senia 2015
- B, Murphy, Senia 2016
- B, Tesi 2017

Back to  $K_L \rightarrow \mu e$ 

b  

$$\tau \quad V^{a}_{\mu}(\bar{q}^{a}_{L}\gamma_{\mu}l_{L}) = V^{a}_{\mu}(\bar{u}^{a}_{L}\gamma_{\mu}\nu_{L} + \bar{d}^{a}_{L}\gamma_{\mu}e_{L}) \quad s \quad \mu$$

$$\nu \quad c \quad BR(K_{L} \to \mu e) < 4.7 \cdot 10^{-12} \quad d \quad e$$

 $(s^a,\mu)$  and  $(d^a,e)$  cannot live in the same SU(4) quartet

#### Way out:

Consider heavy  $(Q^a, L)_{Dirac}$  with  $V^a_{\mu}(\bar{Q}^a_L\gamma_{\mu}L_L)$ and mix them appropriately with standard  $q_L, l_L$ (not trivial if SU(4) is a standard gauge group)

#### Observed anomalies

 $b \to c l \nu$ 

$$\hat{V}_{\mu} \underbrace{\hat{V}_{\mu}}_{\hat{V}_{\mu}} \underbrace{\hat{\rho}_{\mu}^{L}}_{\hat{V}_{\mu}} \underbrace{\hat{\rho}_{\mu}^{L}}_{\hat{V}_{\mu}} \underbrace{\hat{\rho}_{\mu}^{L}}_{\hat{V}_{\mu}} \underbrace{\hat{\rho}_{\mu}^{2}}_{(\frac{\hat{g}_{G}^{2}}{m_{G}^{2}} + \frac{\hat{g}_{\rho}^{2}}{m_{\rho}^{2}})s_{l3}^{2}s_{q3}^{2} \approx 5/TeV^{2}}_{l3}$$

$$b \rightarrow suu$$

 $\hat{V}_{\mu}$ 

ΓΓ

$$\frac{R_{K^{(*)}}}{R_{K^{(*)}}^{SM}} = 0.70 \pm 0.10$$
$$\frac{S_{q2}S_{l2}}{S_{q3}S_{l3}} \frac{E_{\mu 3}}{V_{ts}} \sim 5 \cdot 10^{-3}$$

#### $\frac{s_{q2}s_{l2}}{s_{q3}s_{l3}}\frac{E_{\mu3}}{V_{ts}} \sim 5 \cdot 10^{-3}$ Low energy observables $BR(B \rightarrow D^*\tau v)/BR_{SM} = BR(B \rightarrow D\tau v)/BR_{SM} = BR(\Lambda_b \rightarrow \Lambda_c \tau v)/BR_{SM}$ • b $\rightarrow$ c(u) lv $= BR(B \rightarrow \pi \tau v)/BR_{SM} = BR(\Lambda_b \rightarrow p \tau v)/BR_{SM} = BR(B_u \rightarrow \tau v)/BR_{SM}$ $\begin{array}{c|c} \hat{\rho}_{\mu}^{L} & \hat{\rho}_{\mu}^{R} \\ \hline \\ \hat{g}_{\mu} & \hat{X}_{\mu} & \hat{B}_{\mu} \end{array}$ $\frac{s_{q2}^2}{s_{a3}s_{l3}} \lesssim 10^{-3}$ $\Delta C = 2$ $\begin{array}{c|c} & \hat{\rho}_{\mu}^{L} \ \hat{\rho}_{\mu}^{R} \\ & & \\ & \hat{\gamma}_{\mu}^{L} \ \hat{\beta}_{\mu} \\ & & \\ & & \\ & \hat{X}_{\mu} \ \hat{B}_{\mu} \end{array} \end{array} \qquad E_{\mu 3} \left( \frac{s_{l2}^{2}}{s_{l3}^{2}} + |E_{\mu 3}|^{2} \right) \lesssim 3 \cdot 10^{-3}$ $au ightarrow 3\mu$ $(A_G + (\frac{s_{l3}}{s_{\sigma 3}})^2 A_\rho) E_{\mu 3} \lesssim 0.1$ $\mathcal{M}$ $\tau ightarrow \mu \gamma$ $\frac{s_{q2}s_{l2}}{s_{q3}s_{l3}} \lesssim 10^{-2}$ $B^+ \to K^+ \mu^+ \tau^- \quad \hat{V}_\mu \underbrace{\gtrless}_{\downarrow}$



(against  $V_{ts} \approx U_{t2} + D_{s3} = 4 \cdot 10^{-2}$  )

#### Direct searches of the heavy vectors

Leptoquarks 
$$\hat{V}_{\mu}$$
 pair produced:

$$gg \to \hat{V}^+_\mu \hat{V}^-_\mu \\ \hat{V}^-_\mu \to t\nu, b\tau$$

 $\hat{V}_{\mu}$  exchanged in the t-channel:  $b\overline{b} 
ightarrow au \overline{ au}$ 

Single  $\hat{V}_{\mu}$  production  $gb \rightarrow \hat{V}_{\mu}\tau$ 

All other vectors but  $\hat{\rho}_{\mu}^{R\pm}$ :  $\hat{G}_{\mu}^{\alpha}, \hat{B}_{\mu}, \hat{\rho}_{\mu}^{La}, \hat{\rho}_{\mu}^{R3}, \hat{X}_{\mu}$ couple to the light fermions by F - f mixing (mostly  $f_3$ ) and, flavour universally, by vector mixing

$$\hat{G}^{a}_{\mu} = \frac{g_{G}\mathcal{G}^{a}_{\mu} - g_{3}G^{a}_{\mu}}{\sqrt{g_{G}^{2} + g_{3}^{2}}} \implies \frac{\frac{\Gamma_{\hat{G} \to t\bar{t}}}{m_{G}} \approx \frac{\Gamma_{\hat{G} \to b\bar{b}}}{m_{G}} \approx \frac{\hat{g}_{G}^{2}s_{q3}^{4}}{48\pi}$$
$$\frac{\Gamma_{\hat{G} \to u\bar{u}}}{m_{G}} \approx \frac{\Gamma_{\hat{G} \to d\bar{d}}}{m_{G}} \approx \frac{g_{3}^{4}}{24\pi g_{G}^{2}}$$

 $gg \to \hat{V}^+_\mu \hat{V}^-_\mu \to (t\bar{\nu}_\tau)(\bar{t}\nu_\tau)$ 



 $m_{\hat{V}} > 1.5 \ TeV$ 

