
A Brief Introduction to 
Statistics
Luca Lista

Università Federico II
INFN Naples

Mario Pelliccioni
INFN Torino



Introduction to probability
• Probability can be defined in different ways
• The applicability of each definition depends  

on the kind of claim we are considering to 
applying the concept of probability

• One subjective approach expresses the 
degree of belief/credibility of the claim, which 
may vary from subject to subject 

• For repeatable experiments, probability may 
be a measure of how frequently the claim is 
true
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Frequentist probability
• Probability P = frequency of occurrence of an event in 

the limit of very large number (N→∞) of repeated trials

• Exactly realizable only with an infinite number of trials
– Conceptually may be 

unpleasant
– Pragmatically acceptable

by physicists

• Only applicable to
repeatable experiments
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Probability: P =  lim
Number of favorable cases

N = Number of trialsN→∞



Subjective (Bayesian) probability
• Expresses one’s degree of belief that a claim is true

– How strong? Would you bet? 
– Applicable to all unknown events/claims,

not only repeatable experiments
– Each individual may have a different

opinion/prejudice
• Quantitative rules exist about how

subjective probability should be modified
after learning about some observation/evidence
– Consistent with Bayes theorem (à will be introduced in next slides)
– Prior probability à Posterior probability (following observation)
– The more information we receive, the more Bayesian probability is 

insensitive on prior subjective prejudice
(unless in pathological cases…)
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The Bayes theorem
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The Big Bang Theory © CBS



Bayesian posterior probability
• Bayes theorem allows to determine probability about 

hypotheses or claims H that not related random 
variables, given an observation or evidence E:

• P(H) = prior probability
• P(H | E) = posterior probability, given E
• The Bayes rule allows to define a rational way to 

modify one’s prior belief once some observation is 
known
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Bayes rule and likelihood function
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• Given a set of measurements x1, …, xn, Bayesian posterior PDF 
of the unknown parameters�θ1, …, θm can be determined as:

• Where π(θ1, …, θm) is the subjective prior probability

• The denominator ∫ L(x, θ ) π(θ ) dmθ is a normalization factor

• The observation of x1, …, xn modifies the prior knowledge of the 
unknown parameters θ1, …, θm

• If π(θ1, …, θm) is sufficiently smooth and L is sharply peaked 
around the true values θ1, …, θm, the resulting posterior will not 
be strongly dependent on the prior’s choice



Bayesian inference
• The posterior PDF provides all the information about the 

unknown parameters (let’s assume here it’s just a single 
parameter θ for simplicity)

• Given P(θ |x), we can determine:
– The most probable value 

(best estimate)
– Intervals corresponding to a 

specified probability
• Notice that if π(θ ) is a constant,

the most probable value of θ
correspond to the maximum of 
the likelihood function
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p  = 68.3%, as 1σ 
for a Gaussian

δ δ
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Frequentist inference
• Repeating the experiment will result 

each time in a different data sample
• For each data sample, the estimator

returns a different central value !"
• An uncertainty interval [ !" − δ, !" + δ] 

can be associated to the estimator’s 
value !"

• Some of the confidence intervals 
contain the fixed and unknown true 
value of θ, corresponding to a fraction 
equal to 68% of the times, in the limit 
of very large number of experiments 
(coverage)

CMS DAS Pisa Luca Lista 9

!"

True value of θ

R
ep

ea
te

d 
ex

pe
rim

en
ts



Maximum likelihood
• Given a sample of N measurements of the variables (x1, …, xn), 

the likelihood function is:

• If the size N of the sample is also a random variable, the 
extended likelihood function is usually also used:

• Where P(N; θ1, ... ,θm) is in practice always a Poisson distribution 
whose expected rate is a function of the unknown parameters

• The maximum-likelihood estimator is the most adopted 
parameter estimator 

• The “best fit” parameters correspond to the set of values that 
maximizes the likelihood function
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Choice of 68% prob. intervals
• Different interval choices are possible, corresponding to the 

same probability level (usually 68%, as 1σ for a Gaussian)
– Equal areas in the right and left tails
– Symmetric interval

– Shortest interval
– …

• Reported as ! = #! ± % (sym.) or ! = #!&'(
)'* (asym.) 

p  = 15.8%

p  = 15.8%

Symmetric intervalEqual tails interval

All equivalent for a 
symmetric distribution
(e.g. Gaussian)

p  = 68.3% p  = 68.3%

δ δ

θθ

P(
θ)

P(
θ)
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Upper and lower limits

p  = 90%

p  = 90%

• A fully asymmetric interval choice is obtained setting one 
extreme of the interval to the lowest or highest allowed range

• The other extreme indicates an upper or lower limits to the 
“allowed” range

• For upper or lower limits, usually a probability of 90% or 95% is 
preferred to the usual 68% adopted for central intervals

• Reported as: θ < θup (90% CL) or θ > θlo (90% CL) 

θθ

P(
θ)

P(
θ)



Neyman’s confidence intervals

• Scan the allowed range of an 
unknown parameter θ

• Given a value of θ compute 
the interval [x1, x2] that contain 
x with a probability 1 − α equal 
to 68% (or 90%, 95%) 

• Choice of interval needed!
• Invert the confidence belt: for 

an observed value of x, find 
the interval [θ1, θ2]

• A fraction of the experiments 
equal to 1 − α will measure x
such that the corresponding 
[θ1, θ2] contains (“covers”) the 
true value of θ (“coverage”)

• Note: the random variables 
are [θ1, θ2], not θ !
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Plot from PDG statistics review
Procedure to determine 
frequentist confidence intervals

α = significance level



Simplest example: Gaussian case
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x

µ
• Assume a Gaussian 

distribution with 
unknown average µ
and known σ = 1

• The belt inversion is 
trivial and gives the 
expected result:
Central value "̂ = x ,
[µ1, µ2] = [x − σ, x + σ]

• So we can quote:
1 − α = 68%

" = x ± σ



Binomial intervals
• The Neyman’s belt construction may only guarantee approximate 

coverage in case of discrete variables
• For a Binomial distribution: find the interval {nmin, …, nmax} such that:  
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• Clopper and Pearson (1934) solved the belt 
inversion problem for central intervals

• For an observed n = k, find lowest plo and 
highest pup such that:

• P(n ≤ k | N, plo)  = α/2,  P(n ≥ k | N, pup)  = α/2
• E.g.: n = N = 10, P(N|N) = pN = α/2, hence:

plo = !" #/2 = 0.83 (68% CL), 0.74 (90% CL)
• A frequently used approximation, which  

fails for n = 0, N is:
n

p
N = 10

1 − α = 68%

p = 0.83

p = 0.17



Clopper-Pearson coverage (I)
• CP intervals are often defined as “exact” in literature
• Exact coverage is often impossible to achieve for 

discrete variables
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Clopper-Pearson coverage (II)

• For larger N the “ripple” gets closer to 
the nominal 68% coverage
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Approx. maximum likelihood errors

• A parabolic approximation of −2ln L around the 
minimum is equivalent to a Gaussian approximation
– Sufficiently accurate in many but not all cases

• Estimate of the covariance matrix from 2nd order 
partial derivatives w.r.t. fit parameters at the 
minimum:

• Implemented in Minuit as MIGRAD/HESSE function
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Asymmetric errors
• Another approximation alternative to the parabolic one may be 

to evaluate the excursion range of -2ln L.
• Error (nσ) determined by the range around the maximum for 

which -2ln L increases by +1 (+n2 for nσ intervals)
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θ

-2lnL

-2lnLmax

-2lnLmax+ 1

!" !" + δ+!" – δ−

• Errors can be 
asymmetric

• For a Gaussian PDF 
the result is identical 
to the 2nd order 
derivative matrix

• Implemented in 
Minuit as MINOS 
function

1
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• From previous fit example:
– Ps(m): Gaussian peak
– Pb(m): exponential shape

Exponential decay parameter, 
Gaussian mean and standard 
deviation are fit together with s
and b yields.

The contour shows for this 
case a mild correlation between 
s and b

1σ contour (39.4% CL)
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Binned likelihood
• Sometimes data are available as binned histogram

– Most often each bin obeys Poissonian statistics (event counting)

• The likelihood function is the product of Poisson PDFs corresponding to 
each bin having entries ni

• The expected number of entries ni depends on some unknown 
parameters: µi = µi(θ1, …, θm)

• The function to minimize is the following −2 ln L:

• The expected number of entries µi is often approximated by a 
continuous function µ(x) evaluated at the center xi of the bin

• Alternatively, µi can be a combination of other histograms (“templates”)
– E.g.: sum of different simulated processes with floating yields as fit parameters
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Binned fits: minimum !2

• Bin entries can be approximated by Gaussian variables for 
sufficiently large number of entries with standard deviation equal 
to ni (Neyman’s χ2)

• Maximizing L is equivalent to minimize:

• Sometimes, the denominator ni is replaced (Pearson’s χ2) by:

µi = µ (xi; θ1, …, θm) 

in order to avoid cases with zero or small ni
• Analytic solution exists for linear and other simple problems

– E.g.: linear fit model

• Most of the cases are treated numerically, as for unbinned ML 
fits
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Hypothesis testing: cut analysis
• Selection (“cut”) on one (or more) variable(s):

– If x ≤ xcut ⇒ signal

– Else, if   x > xcut ⇒ background
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xcut x

Efficiency (1 − α)

Mis-id probability (β)
α = area under

the red tail

Test statistic



Terminology
• Statisticians’ terminology is sometimes not very natural for physics applications, 

but it has become popular among physicists as well:

• H0 = null hypothesis
– Ex. 1: “a sample contains only background”
– Ex. 2: “a particle is a pion”

• H1 = alternative hypothesis
– Ex. 1: “a sample contains background + signal”
– Ex. 2: “a particle is a muon”

• Test statistic: a variable computed from our sample that discriminates between the two 
hypotheses H0 and H1. Usually a ‘summary’ of the information available in the sample

• α = significance level: probability to reject H1 if H0is assumed to be true (error 
of first kind, false positive)

– α = 1 – misidentification probability
• β = misidentification probability, i.e.: probability to reject H0 if H1 is assumed 

to be true (error of second kind, false negative)
– 1 – β = power of the test = selection efficiency

• p-value: probability, assuming H0, of observing a result at least as extreme as 
the observed test statistic
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Efficiency vs mis-id
• Varying the applied cut on the test statistic both the 

efficiency and mis-id probability change
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Performance comparison
• One test is preferable to another if, for the same level 

of efficiency (1 − α), it has lower mis-id probability (β)
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The Neyman-Pearson lemma
• For a fixed significance level (α) or signal efficiency (1 − α), a 

selection based on the likelihood ratio gives the lowest possible 
mis-id probability (β):

• The likelihood function can’t always be determined exactly
• If we can’t determine the exact likelihood function, we can 

choose other discriminators as test statistics that approximates
the exact likelihood

• Neural Networks, Boosted Decision Trees and other machine-
learning algorithms are example of discriminators that may 
closely approximate the performances of the exact likelihood 
ratio approaching the Neyman-Pearson limit
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Claiming a discovery
• We want to test our data sample against 

two hypotheses about the theoretical 
underlying model:

– H0: the data are described by a model 
that contains background only 

– H1: the data are described by a model 
that contains signal plus background

• Our discrimination is based on a test 
statistic λ whose distribution is known 
under the two hypotheses

– Let’s assume λ tends to have 
(conventionally) large values if H1 is true 
and small values if H0 is true

– This convention is consistent with λ
being the likelihood ratio L(x|H1)/L(x|H0)

• Under the frequentist approach, 
compute the p-value as the probability 
that λ is greater or equal to than the 
value λobs we observed
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Significance
• The p-value is usually converted into an 

equivalent area of a Gaussian tail:
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• In literature we find, by convention:
– If the significance is Z > 3 (“3σ”) one claims “evidence of”

• Probability that background fluctuation will produce a test statistic at least as 
extreme as the observed value : p < 1.349 ⨉ 10−3

– If the significance is Z > 5 (“5σ”) one claims “observation” (discovery!)
• p < 2.87 ⨉ 10−7

• Note: the probability that background produces a large test statistic is 
not equal to probability of the null hypothesis (background only), which 
has only a Bayesian sense

p-value

Z = 
significance 
level

Φ = cumulative of a 
normal distribution 



Discovery and scientific method
• From Cowan et al., EPJC 71 (2011) 1554:

It should be emphasized that in an actual scientific context, 
rejecting the background-only hypothesis in a statistical 
sense is only part of discovering a new phenomenon. One’s 
degree of belief that a new process is present will depend 
in general on other factors as well, such as the plausibility 
of the new signal hypothesis and the degree to which it can 
describe the data. 
Here, however, we only consider the task of determining 
the p-value of the background-only hypothesis; if it is 
found below a specified threshold, we regard this as 
“discovery”.

“
”Complementary role of Frequentist and Bayesian approaches J
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Upper limits
• Measure the amount of excluded region resulting from our 

(negative) search for a new signal
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,θ
 =

 s

xmin ≤ x ≤ ∞

0
≤ 

s
≤ 

sup

• Building a fully asymmetric Neyman
confidence belt based on the 
considered test statistic x

• Invert the belt, find the allowed 
interval:

s ∈ [s1, s2] ⇒ s ∈ [0, sup]
• Upper limit = upper extreme of the 

asymmetric interval [0, sup]
• In case the observable x is discrete

(e.g.: the number of events n in a 
counting experiments), the 
coverage may not be exact



Modified frequentist approach
• A modified approach was proposed for the first time when combining 

the limits on the Higgs boson search from the four LEP experiments, 
ALEPH, DELPHI, L3 and OPAL

• Given a test statistic λ(x), determine its distribution for the two 
hypotheses H1(s + b) and H0(b), and compute:

!"#$ = & ' ( )* ≤ ',-.
!$ = &(' ( )0 ≥ ',-.)

• The upper limit is computed, instead of requiring 
ps+b ≤ α, on the modified statistic CLs ≤ α:

• Since 1−pb ≤ 1, CLs ≥ ps+b, hence
upper limits computed with the 
CLs method are always conservative 
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ps+b

−2 ln λ

pb

Note: ' ≤ ',-. implies −2ln' ≥ ',-.



CLs with toy experiments
• In practice, pb and ps+b are computed in from 

simulated pseudo-experiments (“toy Monte Carlo”)
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−2 ln λ

Plot from LEP Higgs combination paper



Main CLs features
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• ps+b: probability to obtain a result which is less 
compatible with the signal than the observed 
result, assuming the signal hypothesis

• pb: probability to obtain a result less compatible
with the background-only hypothesis than the 
observed one

• If the two distributions are very well separated 
ad H1 is true, than pb will be very small ⇒
1-pb ~ 1 and CLs ~ ps+b, i.e: the ordinary p-value 
of the s+b hypothesis

• If the two distributions largely overlap, than if pb
will be large ⇒ 1 - pb small, preventing CLs to 
become very small

• CLs < 1 − α prevents rejecting 
cases where the experiment 
has little sensitivity 

−2ln λ

exp.
for b

exp.
for s+b

pb ~ 0 ps+b ~ CLs

−2ln λ

exp.
for b

exp.
for s+b

pb ~ 1 ps+b < CLs



Observations on the CLs method
• “A specific modification of a purely classical statistical 

analysis is used to avoid excluding or discovering signals 
which the search is in fact not sensitive to”

• “The use of  CLs is a conscious decision not to insist on 
the frequentist concept of full coverage (to guarantee that 
the confidence interval doesn’t include the true value of the 
parameter in a fixed fraction of experiments).”

• “confidence intervals obtained in this manner do not have 
the same interpretation as traditional frequentist 
confidence intervals nor as Bayesian credible intervals”
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A. L. Read, Modified frequentist analysis of search results 
(the CLls method), 1st Workshop on Confidence Limits, CERN, 2000



Nuisance parameters
• Usually, signal extraction procedures (fits, upper limits setting) 

determine, together with parameters of interest, also nuisance 
parameters that model effects not strictly related to our final 
measurement
– Background yield and shape

parameters
– Detector resolution
– ...

• Nuisance parameters are also used
to model sources of systematic
uncertainties

• Often referred to nominal values
– Examples:
– b = β σb Lint with βnominal = 1
– b = eβ σb Lint with βnominal = 0

(negative yields not allowed!)
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Nuisance pars in Bayesian approach

• Notation below: µ = parameter(s) of interest, 
θ = nuisance parameter(s)

• No special treatment:

• P(µ|x) obtained as marginal PDF of µ obtained 
integrating on θ:
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Profile likelihood
• Define a test statistic based on a likelihood ratio:

• µ is usually the “signal strength” (i.e.: σ/σth) in case of a search 
for a new signal

• Different ‘flavors’ of test statistics
– E.g.: deal with unphysical µ < 0, …

• The distribution of qµ = −2 ln λ(µ) may be asymptotically 
approximated to the distribution of a χ2 with one degree of 
freedom (one parameter of interest = µ) due to the Wilks’ 
theorem
(à next slide)
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Fix µ, fit θ

Fit both µ and θ



Wilks’ theorem (1938)
• Consider a likelihood function from N measurements:

• Assume that H0 and H1 are two nested hypotheses, i.e.: they can be 
expressed as:

• Where Θ0 ⊆ Θ1. Then, the following quantity for N→∞ is distributed as a 
χ2 with n.d.o.f. equal to the difference of Θ0 and Θ1 dimensionality: 

• E.g.: searching for a signal with strength µ,  H0: µ = 0, H1: µ ≥ 0 we have 
the profile likelihood (supremum = best fit value):
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Systematic uncertainties
• Gaussian signal over an exponential 

background
• Fix all parameters from theory 

prediction, fit only the signal yield
• Assume a –say– 30% uncertainty on 

the background yield
• A log normal model may be assumed to 

avoid unphysical negative yields
– b0 = b eβ, where our estimate β is known 

with a Gaussian uncertainty σβ = 0.3
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b0 = true 
(unknown) 
value
b = our 
estimate



Systematic uncertainties
• The profile likelihood shape is broadened, with 

respect to to the usual likelihood function, due to the 
presence of nuisance parameter β (loss of 
information) that model systematic uncertainties

• Uncertainty on s increases
• Significance for 

discovery using s as
test statistic decreases
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No bkg uncertainty
With 30% bkg uncert.

This implementation is based
on RooStats, a package, released
as optional library with ROOT
http://root.cern.ch
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Significance evaluation
• Assume µ = 0, if q0= −2 ln λ(0) can be approximated by a χ2 with 

one d.o.f., then the significance is approximately equal to:
! ≅ #$

• The level of approximation can be verified with a computation 
done using pseudo experiments:

• Generate a large number of toy samples with zero background 
and determine the distribution of q0= −2 ln λ(0), then count the 
fraction of cases with values
greater than the measured
value (p-value), and convert
it to Z:

• Toy samples may be unpractical
for very large Z
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No bkg uncertainty
With 30% bkg uncert.! ≅ 2×6.66 = 3.66

! ≅ 2×3.93 = 2.81    



Variations on test statistic
• Test statistic for discovery:

– In case of a negative estimate of µ, set the test statistic to zero: consider 
only positive µ as evidence against the background-only hypothesis. 
Approximately: ! ≅ #$.

• Test statistic for upper limits:

– If the estimate is larger than the assumed µ, an upward fluctuation 
occurred. Don’t exclude µ in those cases, hence set the statistic to 
zero

• Higgs test statistic:
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As for upper limits statistic

Protect for unphysical µ<0

G. Cowan et al., EPJ C71 (2011) 1554



Asymptotic approximations
• Asymptotic approximate formulae exist for most of adopted estimators
• If we want to test µ and we suppose data are distributed according to 
µʹ, we can write:

where "̂ is distributed according to a Gaussian with average µʹ and 
standard deviation σ (A. Wald, 1943)

• The covariance matrix can be asymptotically approximated by:

where µʹ is assumed as signal strength value
• Case by case, the estimate of σ (from the inversion of Vij−1) can be 

determined
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A. Wald, Trans. of AMS 54 n.3 (1943) 426-482

G. Cowan et al., EPJ C71 (2011) 1554



The look-elsewhere effect
• Consider a search for a signal peak over a background 

distribution that is smoothly distributed over a wide range
• You could either:

– Know which mass to look at, e.g.: search for a rare decay with a 
known particle, like Bs→µµ

– Search for a peak at an unknown mass value, like for the Higgs 
boson

• In the former case it’s easy to compute the peak significance:
– Evaluate the test statistics for µ = 0 (background only) at your 

observed data sample 
– Evaluate the p-value according to the expected distribution of your test 

statistic q under the background-only hypothesis, convert it to the equivalent 
area of a Gaussian tail to obtain the significance level:
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The look-elsewhere effect
• In case you search for a peak at an unknown mass, the previous p-value has 

only a local meaning:
– Probability to find a background fluctuation as large as your signal or more at a fixed 

mass value m:

– We need the probability to find a background fluctuation at least as large as your signal 
at any mass value (global)

– local p-value would be an overestimate of the global p-value 
• The chance that an over-fluctuation occurs on at least one mass value increases 

with the searched range
• Magnitude of the effect: 

– Roughly proportional to the ratio of resolution over the search range, also depending 
on the significance of the peak

– Better resolution = less chance to have more events compatible with the same mass 
value

• Possible approach: let also m fluctuate in the test statistics fit:
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Note: for µ=0
L doesn’t depend on m
Wilks’ theorem doesn’t apply



The End.
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