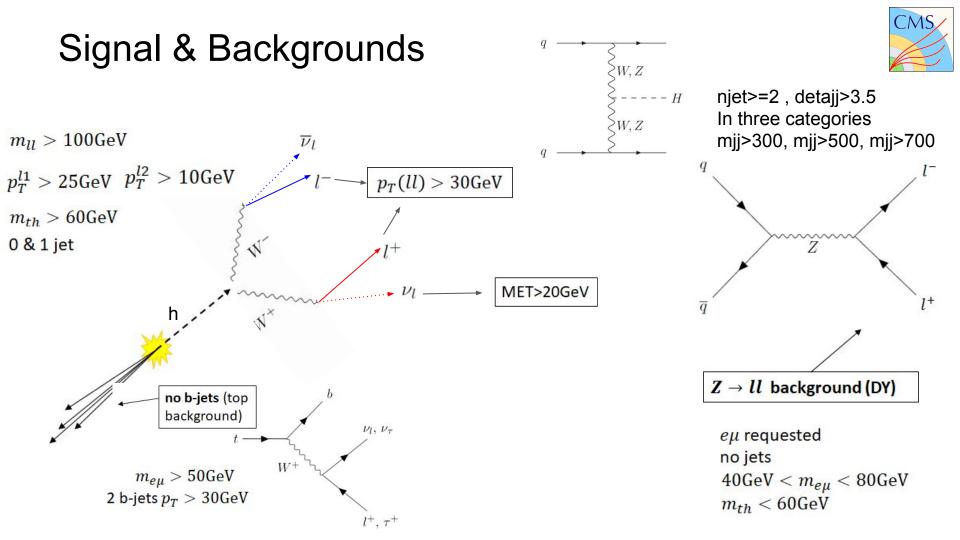
# Search for a high mass scalar decaying to WW in the di-leptonic channel on 2016 CMS data ( $X \rightarrow WW \rightarrow 2\ell 2\nu$ )

Alessandro Da Rold, Negin Shafiei, Thomas Kello, Giulio Mandorli Dimitrios Sidiropoulos Kontos, Gourab Saha, Davide Valsecchi, Suvankar Roy Chowdhury

Facilitators: Piergiulio Lenzi, Lorenzo Viliani, Vitaliano Ciulli

Although we are named SMP group, we searched for BSM physics!!




#### **Motivation**

• SM provides only one Higgs at 125 GeV

• 125 GeV Higgs might be a part of a larger scalar sector and partially responsible for EW symmetry breaking

• High mass scalar particles can prove vacuum stability up to high energy scale which is also incorporated in 2HDM, Type II SeeSaw Model etc.



## Objects and Triggers (2016 CMS data)

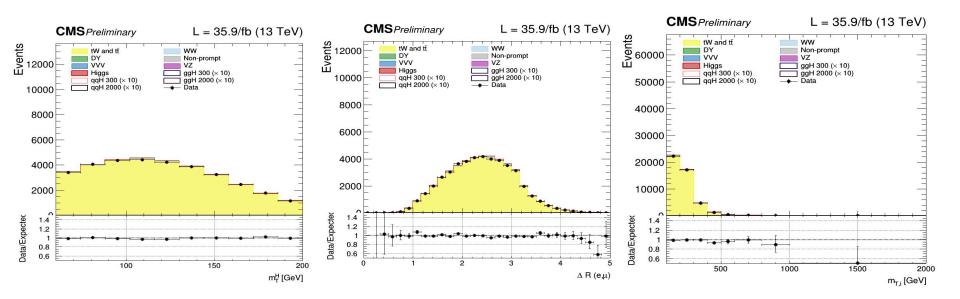


#### • <u>Trigger</u>

- **Single Lepton**: HLT\_IsoMu24, HLT\_IsoTkMu24, HLT\_Ele27\_WPTight\_Gsf, HLT\_Ele25\_eta2p1\_WPTight Gsf
- MuonEG: HLT\_Mu8\_TrklsoVVL\_Ele23\_CaloIdL\_TrackIdL\_IsoVL, HLT\_Mu23\_TrklsoVVL\_Ele12\_CaloIdL\_TrackIdL\_IsoVL,HLT\_Mu12\_TrklsoVVL\_Ele23\_CaloI dL\_TrackIdL\_IsoVL\_DZ, HLT\_Mu23\_TrklsoVVL\_Ele12\_CaloIdL\_TrackIdL\_IsoVL\_DZ
- <u>Muons & Electron</u>
  - Identification and Isolation as used in HIG-16-042 (HWW analysis with 2016 dataset)

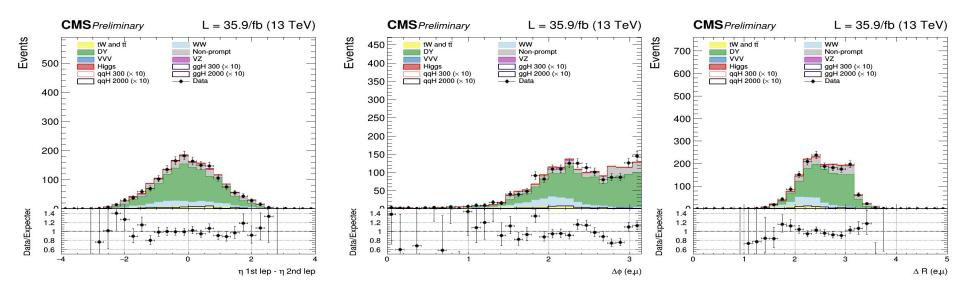
#### Preselection

- Presence of an electron-muon pair
- Leading lepton pt > 25 GeV sub-leading lepton > 10 GeV
- PFMET > 20 GeV
- m<sub>||</sub> > 12 GeV
- pT<sub>||</sub> > 30 GeV


## Signal and control region selection

CMS

- Normalisation of three main background free in the fit
- DY and t t-bar contribution estimated in control regions
- WW normalization is constrained in signal region
- Control Regions:
  - DY to  $\tau\tau$ : m<sub>th</sub> < 60 GeV, 40 < m(eµ) < 80 GeV
  - Top:  $m(e\mu) > 50$  GeV, 2-bjets with pT > 30 GeV
- Signal Region:
  - $\circ~~m_{_{\rm H}}{>}100~GeV,\,m_{_{\rm th}}{>}60~GeV$  , bjet veto (Inclusive)
  - 0-jet : pTj < 30 GeV
  - o 1-jet
  - VBF: njet>=2 , detajj>3
  - $\circ$  ~ We optimize VBF in three categories of mass :mjj>300 , mjj>500, mjj>700 ~




#### Top control region

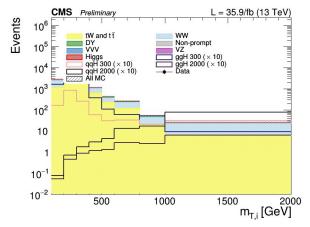


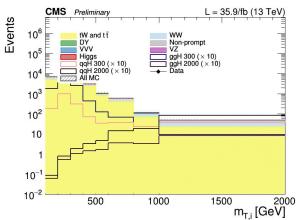


## DY control region





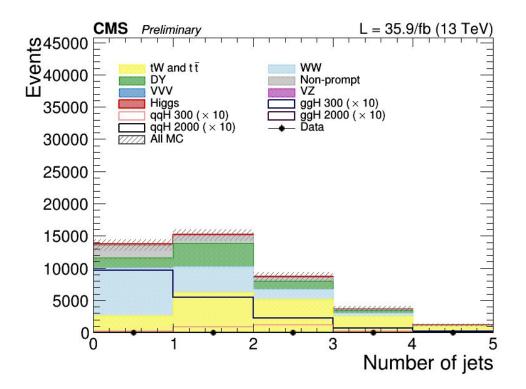

## **Systematics**


- QCD scale: theoretical uncertainty
- Luminosity: 2.5% uncertainty, does not affect fitted backgrounds (TTJets, DY, WW)
- **B-tagging** (both for heavy and light flavour quarks), **trigger efficiency**, electron and muon energy scale: uncertainty on scale factors with a weight
- Jet energy scale: varied trees must be computed, affects also MET distribution
- Monte Carlo statistics: fitting procedure in control regions affected by limited statistics of simulation

## Inclusive analysis: optimisation of the b-veto WPs

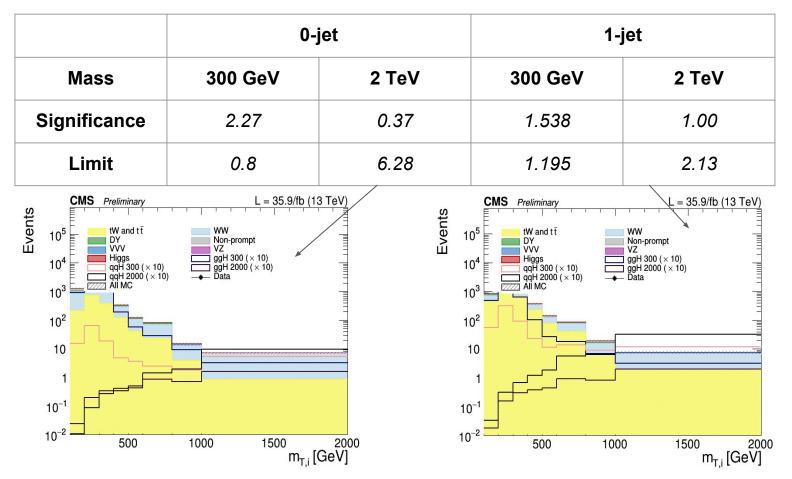


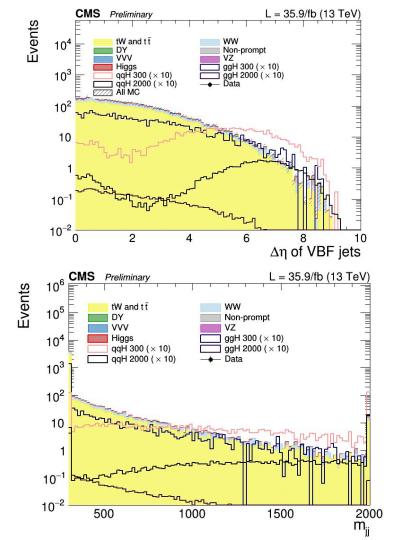
|              | Loose WP |      | Medium WP |      | Tight WP |      |
|--------------|----------|------|-----------|------|----------|------|
| Mass         | 300GeV   | 2Tev | 300GeV    | 2TeV | 300GeV   | 2TeV |
| Significance | 2.72     | 1.35 | 2.268     | 1.20 | 1.86     | 1.05 |
| Limit        | 0.6895   | 1.5  | 0,839     | 1.68 | 1.027    | 1.92 |





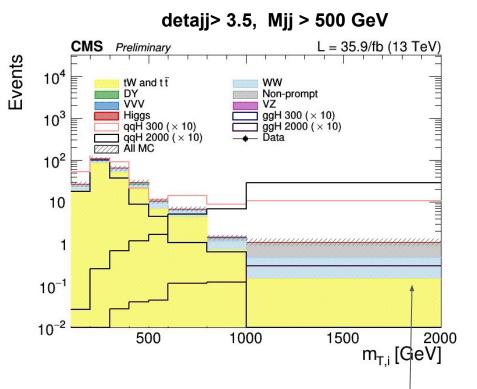




#### Shape analysis with jet categories


- Distinguish different backgrounds with number of jets categories
- Better significance and limits combining all the exclusive measurements
- **2-jet:** main signal contribution VBF: two separated jets and high invariant mass to enhance the significance (next slide)



## Combined final results (0-jet & 1-jet)








#### VBF category cut optimization





The gluon fusion contribution decreases at high mass in this category



#### VBF working point choice

|                  | 2          | 2j    | 2j +       | - Δη  | 2j + ∆ı    | ղ + 300 | 2j + Δι    | ղ + 500 | 2j + Δι    | ן + 700 |
|------------------|------------|-------|------------|-------|------------|---------|------------|---------|------------|---------|
| Mass             | 300<br>GeV | 2 TeV | 300<br>GeV | 2 TeV | 300<br>GeV | 2 TeV   | 300<br>GeV | 2 TeV   | 300<br>GeV | 2 TeV   |
| Signific<br>ance | 0.44       | 0.81  | 0.82       | 1.35  | 0.85       | 1.42    | 1.12       | 1.50    | 1.28       | 1.80    |
| Limit            | 4.4        | 2.55  | 2.26       | 1.51  | 2.11       | 1.46    | 1.55       | 1.37    | 1.33       | 1.19    |

#### Combination of jet analysis

| CMS |
|-----|
|     |
|     |

#### 300 GeV

| INCLUSIVE               |         |       |  |  |
|-------------------------|---------|-------|--|--|
|                         | 300 GeV | 2 TeV |  |  |
| Expeted<br>Significance | 2.72    | 1.35  |  |  |
| Expected<br>Limit       | 0.69    | 1.5   |  |  |

#### **JET COMBINATION**

|                          | 300 GeV | 2 TeV |
|--------------------------|---------|-------|
| Expected<br>Significance | 3.53    | 2.20  |
| Expected<br>Limit        | 0.50    | 0.94  |

| Poisson | ined Gaussian CMS                       |                                       | $\hat{r} = 1.00^{+0.27}_{-0.28}$ |
|---------|-----------------------------------------|---------------------------------------|----------------------------------|
| 1       | CMS_hww_WWnorm                          | 1.00 <sup>+0.12</sup>                 |                                  |
| 2       | CMS_scale_j                             |                                       |                                  |
| 3       | CMS_btag_heavy                          |                                       |                                  |
| 4<br>5  | CMS_hwwem_fake_syst<br>CMS_hww_DYttnorm | 1.00-0.09                             |                                  |
|         |                                         | 1.00_0.09                             |                                  |
| 6<br>7  | prop_binSR_0j_bin0                      |                                       |                                  |
| 7<br>B  | prop_binSR_0j_bin1<br>CMS_scale_met     |                                       |                                  |
| 9       |                                         |                                       |                                  |
| 9<br>10 | prop_binSR_2j_bin1<br>QCDscale_top      |                                       |                                  |
| 10      | CMS eff e                               |                                       |                                  |
| 12      | prop_binSR_1j_bin3                      |                                       |                                  |
| 12      | prop_binSR_0j_bin5                      |                                       |                                  |
| 13      | lumi_13TeV                              |                                       |                                  |
| 15      | CMS_tww_fake_mu                         |                                       |                                  |
| 16      | prop_binSR_1j_bin0                      |                                       |                                  |
| 17      | prop_binSR_1j_bin1                      |                                       |                                  |
| 18      | prop_binSR_2j_bin7                      |                                       |                                  |
| 19      | prop_binSR_1j_bin5                      | · · · · · · · · · · · · · · · · · · · |                                  |
| 20      | prop_binSR_0j_bin4                      |                                       |                                  |
| 21      | CMS_hww_Topnorm                         | 1.00+0.11                             |                                  |
| 22      | CMS_btag_light                          | -0.09                                 |                                  |
| 23      | QCDscale_WW                             |                                       |                                  |
| 24      | prop_binSR_0j_bin3                      |                                       |                                  |
| 25      | CMS_hww_fake_ele                        | <b>→</b>                              |                                  |
| 26      | prop_binSR_2j_bin3                      |                                       |                                  |
| 27      | CMS_hwwme_fake_syst                     | <b>↓</b> ↓                            |                                  |
| 28      | prop_binSR_1j_bin4                      |                                       |                                  |
| 29      | CMS_hww_fake_ele_stat                   |                                       |                                  |
| 30      | CMS_hww_trigger                         |                                       |                                  |
|         | -2                                      | -1 0 1 2                              | -0.2 -0.1 0 0.1 0.2              |

## CMS

#### Conclusion

We search for a high mass resonance using the 2016 data

We studied background rejection and signal region categorization

We included experimental and theoretical systematics and produced expected limits and expected significances in SM-like Higgs hypothesis for different masses

We had fun!



#### BACKUP

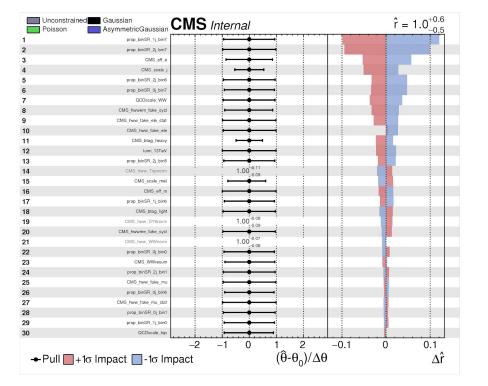
#### Data and simulations

## Signal

- Scalar (300 GeV, 2TeV) produced in vector-boson fusion \_\_\_\_\_ 2-jet

#### Backgrounds

- DY to tau tau
- TTJets
- WW
- GluGluHToWWTo2L2NuPowheg\_M125
- VBFHToWWTo2L2NuPowheg\_M125
- VVV


#### Data

Full 2016 dataset, 36 fb-1

0-jet

- SingleElectron
- SingleMuon
- DoubleMuon
- DoubleEG
- MuonEG





#### 2000 GeV

