CMS Data Analysis School: HH—bbTT
Exercise



Di-Higgs Production: The Physics Case

Non-Resonant Production Resonant Production
Allows measuring Higgs trilinear b Model-independent search of narrow
coupling A width resonance not predicted by the
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but can constrain BSM models that 94150/attachments/1787235/2910327/CMSDAS

predict an enhanced hh production _2019_HH_bbtautau.pdf
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Why bbTTt ?

Good trade-off between BR and
signal purity

bb is the decay channel with
highest BR and b-jets tagging; it is
very efficient thanks to the precise
reconstruction of primary and
secondary vertices

Tau lepton reconstruction is quite
challenging, but efficient algorithms
have been developed across the
years within the CMS collaboration

Larger BR

bb
WW
g9

TT
CcC
z7Z
Y
Zy
uu

: f f : s : : 1

. ________________ n BRsu(H—=hh—=xxyy) !104
e e 8.

7.3% : | =10
***** |3

L -

i i i
bb WW g9 Tt CcC ZZ Yy Zy W

Rarer BR



Analysis Workflow

Three different final states for H-> 117 are considered: 7 1., 7 1., T,T

1.

o
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Determine the channel looking for isolated electrons, muons, or taus in the event
(rejection of electrons faking taus)

SM H -> 11 analysis selections adding some specific cuts for this search are used
CSVv2 algorithm provided by the b-tag POG is used to select bb candidates
Invariant mass for H -> bb and H-> 11 candidates is required to be around the
Higgs boson mass. Irreducible ttbar background is rejected applying an elliptical
cut on these masses (cut optimization using standard techniques)

Limit extraction is performed in different ways:

a. HH mass after a kinematic fit (resonant analysis)

b. stranverse mass (non resonant analysis) (optimization using ML techniques)
study of the background composition and its impact on the signal sensitivity

* exercises of this long exercise



Baseline selection studies



Selection efficiency

>  Samples:
o Signal: /gpfs/ddn/cms/user/cmsdas/2019/hh_bbtautau/miniAOD/GluGluToHHTo2B2Tau_node_SM/
o DY: /gpfs/ddn/cms/user/cmsdas/2019/hh_bbtautau/miniAOD/DY JetsToLL_M-50
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Efficiency of anti-electron cut

> Anti-electron cut applied in order to reject electron faking hadronic tau decay
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Contamination by electrons faking 1

> Contamination by electrons in final state
o reco tau matched to promt electron
o reco tau matched to electron from tau decay
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Significance Estimation



QCD Estimation

For each sideband region: QCD = Data - tt - Drell-van - SM Higgs - Other backgrounds
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QCD Estimation

Opposite Sign Same Sign « “ABCD” Method

2 05 , 5 , * Sighal region QCD: A=B*C/D
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Significance

Resonance production
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« With 10 mass cuts around the
resonance peak, significance
improves.

Non - Resonance production
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H-H Candidate Selection Optimization

Signal 460 TT
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Mass window is optimized Accordingly to the resolution and mean value
of m_tautau and m_bb distributions:
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Optimization workflow

e The distributions show:
o irreducible backgrounds from ttbar process.
o A long event tail, which is bad for MC modeling.

e Mass cut optimization on invariant mass of HH candidate was carried out on
three channel (etau,mtau,tautau). The minimized parameters will give us
optimal significance.

e Multitude of optimization was performed on ellipse’s parameters (elliptical
center and radius) by custom minimizer base on MINUIT, using most
probable value and interquantile distance for center (118.5, 117.5) and radius
(22.5, 14.2).
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Optimization summary

Channel

eTau

muTau

tauTau

Fitted Centers
x0=115+27
y0 =116 £ 16
x0=112+97
y0 =116 £ 97

x0 =112 £ 2
y0=113+0.8

Fitted Radius

a=27+04
b=26+0.5
a=31+60
b= 28+28
a= 26+11
b= 13+3
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Further signal selection and machine learning
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Machine Learning setup

selection:
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Baseline selections in each channel applied
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Elliptical H mass selection (not optimized) applied (mpp — 112) n (mgy — 111)
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Study on non-resonant analysis

Separate training performed for each channel

20259 signal events and 29692 background in TauTau channel.

80% for training and 20% for testing

input variables: (m_bb, m_tt, m_bbtt) + customized others Note that in non-resonant analysis, signal is

extracted from the “generalized transverse
O(5 layers, 10 nodes per layer) mass”. So m_bbtt can be used for training.

mrz = min Amax[my(mp1, P4, mils, pr1), mr (Mp2, P52 miZ pr2) |}
pPT1tPT2=PT
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MVA performance

These are only very preliminarily optimized
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ROC curve

MuTau channel

1 elliptical selection not applied

input variables = (m_bb, m_tt, m_bbtt)
hidden layers = 6
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dropout = 0.55
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Cut efficiency and sensitivity

settings for this ML:

TauTau channel

elliptical selection applied

input variables = (m_bb, m_tt, m_bbtt, dphi_hbbhtautau)
hidden layers = 3

nodes per layer = 32

dropout = 0.2

sensitivity vs signal efficiency
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Many thanks to Maria Teresa and Konstantin for
helping us to understand something of this
analysis!!!
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