
Noname manuscript No.
(will be inserted by the editor)

Production Workload Management on Leadership
Class Facilities

Do you have a subtitle?
If so, write it here

First Author · Second Author

Received: date / Accepted: date

Abstract Insert your abstract here. Include keywords, PACS and mathemat-
ical subject classification numbers as needed.

Keywords First keyword · Second keyword · More

1 Introduction

Traditionally, the ATLAS experiment at LHC has utilized distributed re-
sources as provided by the WLCG to support data distribution and enable the
simulation of events. For example, the ATLAS experiment uses a geograph-
ically distributed grid of approximately 200,000 cores continuously (250,000
cores at peak), (over 1,000 million core-hours per year) to process, simulate,
and analyze its data (today’s total data volume of ATLAS is more than 300
PB). After the early success in discovering a new particle consistent with the
long awaited Higgs boson, ATLAS is starting the precision measurements nec-
essary for further discoveries that will become possible by much higher LHC
collision energy and rates from Run2. The need for simulation and analysis
will overwhelm the expected capacity of WLCG computing facilities unless
the range and precision of physics studies will be curtailed.

Over the past few years, the ATLAS experiment has been investigating
the implications of using high-performance computers – such as those found

Grants or other notes about the article that should go on the front page should be placed
here. General acknowledgments should be placed at the end of the article.

F. Author
first address
Tel.: +123-45-678910
Fax: +123-45-678910
E-mail: fauthor@example.com

S. Author
second address



2 First Author, Second Author

at Oak Ridge leadership class facility (ORNL). This steady transition is a
consequence of application requirements (e.g., greater than expected data pro-
duction), technology trends and software complexity.

Our approach to the exascale involve the BigPanDA workload manage-
ment system which is responsible for coordination of tasks, orchestration of
resources and job submission and management. Historically, BigPanDA was
used to for workload management across multiple distributed resources on the
WLCG. We describe the changes to the BigPanDA software system needed to
enable BigPanDA to utilize Titan. We will then describe how architectural,
algorithmic and software changes have also been addressed by ATLAS com-
puting.

We quantify the impact of this sustained and steady uptake of supercom-
puters via BigPanDA: For the latest 18 month period for which data is avail-
able, Big Panda has enabled the utilization of ∼400 Million Titan core hours
(primarily via Backfill mechanisms 275M, but also through regular “front end”
submission as part of the ALCC project 125M). This non-trivial amount of
400 million Titan core hours has resulted in 920 million events being anal-
ysed. Approximately 3-5% of all of ATLAS compute resources now provided
by Titan; other DOE supercomputers provide non-trivial compute allocations.
In spite of these impressive numbers, there is a need to further improve the
uptake and utilization of supercomputing resources to improve the ATLAS
prospects for Run 3.

In spite of these impressive numbers, there is a need to further improve
the uptake and utilization of supercomputing resources to improve the ATLAS
prospects for Run 3. The aim of this paper to (i) . . . (ii) . . . (iiii) . . . (iv) We will
outline how we have steadily made the ATLAS project ready for the exascale
era . . .

2 PanDA Workload Management System: Software System
Overview

PanDA is a Workload Management System (WMS) [marco2009glite] designed
to support the execution of distributed workloads and workflows via pilots
[turilli2017comprehensive]. Pilot-capable WMS enable high throughput of tasks
execution via multi-level scheduling while supporting interoperability across
multiple sites. This is particularly relevant for LHC experiments, where mil-
lions of tasks are executed across multiple sites every month, analyzing and
producing petabytes of data. The design of PanDA WMS started in 2005 to
support ATLAS.

2.1 Design

PanDA’s application model assumes tasks grouped into workloads and work-
flows. Tasks represent a set of homogeneous operations performed on datasets



Production Workload Management on Leadership Class Facilities 3

stored in one or more input files. Tasks are decomposed into jobs, where each
job consists of the task’s operations performed on a partition of the task’s data
set. PanDA’s usage model assumes multitenancy of resources and at least two
types of HEP users: individual researchers and groups executing so called
“production” workflows. Production workflows is a set of transformations of
collected and simulated data into formats which are used for user analysis.

PanDA’s security model is based on separation between authentication,
authorization and accounting for both single users and group of users. Both
authentication and authorization are based on digital certificates and on the
virtual organization abstraction [foster2001anatomy]. Currently, PanDA’s ex-
ecution model is based on four main abstractions: task, job, queue, and pilot.
Both tasks and jobs are assumed to have attributes and states and to be
queued into a global queue for execution. Prioritization and binding of jobs
are assumed to depend on the attributes of each job. Pilot is used to indicate
the abstraction of resource capabilities. Each job is bound to one pilot and
executed at the site where the pilot has been instantiated.

In PanDA’s data model, each datum refers to the recorded or simulated
measurement of a physical process. Data can be packaged into files or other
containers. As with jobs, data have both attributes and states, and some of
the attributes are shared between events and jobs. Raw, reconstruction, and
simulation data are all assumed to be distributed across multiple storage fa-
cilities and managed by the ATLAS Distributed Data Management (DDM)
[garonne2012atlas]. When necessary, input files required by each job are as-
sumed to be replicated over the network, both for input and output data.
PanDA’s design supports provenance and traceability for both jobs and data.
Attributes enable provenance by linking jobs and data items, providing in-
formation like ownership or project affiliation. States enable traceability by
providing information about the stage of the execution in which each job or
data file is or has been.

2.2 Implementation and Execution

The implementation of PanDA WMS consists of several interconnected sub-
systems, most of them built from off-the-shelf and Open Source components.
Subsystems communicate via messaging using HTTP and dedicated APIs, and
each subsystem is implemented by one or more modules. Databases are used
to store eventful entities like tasks, jobs, and input/output data and to store
information about sites, resources, logs, and accounting.

Currently, PanDA’s architecture has five main subsystems: PanDA Server
[maeno2011overview], AutoPyFactory [caballero2012autopyfactory], PanDA Pi-
lot [nilsson2011atlas], JEDI [borodin2015scaling], and PanDA Monitoring [kli-
mentov2011atlas]. PanDA uses ATLAS Grid Information system (AGIS) [1742-
6596-513-3-032001] to obtain information about distributed resources.

Other subsystems are used by some of ATLAS workflows (e.g., ATLAS
Event Service [calafiura2015atlas]), but their discussion is omitted here be-



4 First Author, Second Author

cause they are irrelevant to understanding how PanDA has been ported to su-
percomputers. For a full list of subsystems, see Ref. [panda-wiki url]. Figure 1
shows a diagrammatic representation of PanDA’s main subsystems, highlight-
ing the execution process of tasks while omitting monitoring details to improve
readability. During first LHC data taking period (LHC Run 1), PanDA re-
quired users to perform a static conversion between tasks and jobs; tasks were
described as a set of jobs and then submitted to the PanDA Server. This intro-
duced inefficiency both with usability and resource utilization. Ideally, users
should conceive analyses in terms of one or more potentially related tasks,
while the workload manager (i.e., PanDA) should partition tasks into jobs,
depending on execution constraints. Further, the static partitioning of tasks
into jobs does not take into account the heterogeneous and dynamic nature of
the resources on which each job will be executed, introducing inefficiencies.

Another problem of static job sizing is that PanDA instantiates pilots on
sites with different type of resources and different models of availability of those
resources. An optimal sizing of each job should take these properties into ac-
count. For example, sites may offer cores with different speeds, networking
with different amounts of bandwidth, and resources with different availabili-
ties which may or may not be guaranteed for known amounts of time. These
resources could disappear at any point in time, as often happens with oppor-
tunistic models of resource provision. JEDI system was deployed to address
these inefficiencies. Users submit task descriptions to JEDI (Fig. 1:1), which
stores them into a queue implemented by a database (Fig. 1:2). Tasks are
partitioned into jobs of different sizes, depending on both static and dynamic
information about available resources (Fig. 1:3). Jobs are bound to sites with
resources that best match jobs’ requirements, and they are submitted to the
PanDA Server for execution (Fig. 1:4).

Once submitted to the PanDA Server, tasks are stored by the Task Buffer
component into a global queue implemented by a database (Fig. 1:5). When
jobs are submitted directly to the PanDA Server, the Brokerage module is
used to bind jobs to available sites, depending on static information about the
resources available for each site. Jobs submitted by JEDI are already bound
to sites, so no further brokerage is needed.

Once jobs are bound to sites, the Brokerage module communicates to the
Data Service module about which datasets need to be made available to which
sites (Fig. 1:6). The Data Service communicates these requirements to the
ATLAS DDM (Fig. 1:7) which replicates datasets at the required sites when
needed (Fig. 1:8).

Meanwhile, AutoPyFactory defines PanDA Pilots, submitting them to a
Condor-G agent (Fig. 1:9). Condor-G schedules these pilots wrapped as jobs
or virtual machines to the required sites (Fig. 1:10).

When a PanDA Pilot becomes available, it requests a job to execute from
the Job Dispatcher module of the PanDA Server (Fig. 1:11). The Job Dis-
patcher interrogates the Task Buffer module for a job which is bound to the
site of that pilot and ready to be executed. Task Buffer checks the global
queue (i.e., the PanDA database) and returns a job to the Job Dispatcher if



Production Workload Management on Leadership Class Facilities 5

Fig. 1 PanDA WMS architecture. Numbers indicate the JEDI-based execution process
described in section 2.2. Several subsystems, components, and architectural and communi-
cation details are abstracted to improve clarity.

one is available. The Job Dispatcher dispatches that job to the PanDA Pilot
(Fig. 1:12).

Upon receiving a job, a PanDA Pilot starts a monitoring process and forks
a subprocess for the execution of the job’s payload. Input data are trans-
ferred from the stage-in location (Fig. 1:13) and the job’s payload is executed
(Fig. 1:14). Once completed, output is transferred to the staging-out location
(Fig. 1:15).

The Data Service module of the PanDA Server tracks and collects the
output generated by each job (Fig. 1:16), updating jobs’ attributes via the
Task Buffer module (Fig. 1:17). When the output of all the jobs of a task are
retrieved, it is made available to the user via PanDA Server. When a task is



6 First Author, Second Author

submitted to JEDI, task is instead marked as done (Fig. 1:18) and the result
of its execution is made available to the user by JEDI (Fig. 1:19).

2.3 Job-State Definitions in PanDA

The lifecycle of the job in the PanDA system is splitted to the series of conse-
quently changing states. Each state literally coupled with the PanDA job sta-
tus used by the different algorithms and monitoring. Status reflect the current
step of the job processing since the job submitted to the system, transferred
to the particular resource and finally executed.

Job injected into the system by the JEDI in ATLAS or by the PanDA client
in general case is persist as so-called job parameters object and corresponds
to the “Pending” status. Job parameters are the object where job definition is
unsorted and all parameters are placed in a string. Sorting out parameters of
the job by dedicated DB fields job transferring into the “Defined” status. On
this stage the job is processed throw the brokerage algorithm and being as-
signed to particular resource (PanDA queue) it is moved to “Assigned” status.
Concurrently with that PanDA server checks availability of the input data and
needed SW at the resource. The job stays in the “Waiting” state until data
and the SW are ready and then it moved to the “Activated” status. Activated
job is ready to be dispatched by its order to the next corresponding pilot.
Job dispatched and taken by the pilot is moved to the “Sent” status. Since
this moment the handling of the job processing is delegated to the pilot. Few
next job states are corresponding represents the steps of the job processing on
the resource. Next “Starting” status means that the pilot is starting the job
on a worker node or local batch system. The job running on a worker node
marked as in “Running” status. Next states progression is return to the han-
dling by the server. When the job execution is ended and output and log files
are transferred then PanDA server either pilot is responsible to register that
files in the file catalog. At the same time pilot return the server the final status
of the job either it was successful or the job failed. During this process the
job stays in “Holding” status. PanDA server check the output files regularly
by the cron job and finally assign the final “Finished” or “Failed” status to
the job. Some additional statuses and two most important are “Cancelled” for
manually killed jobs or “Closed” - terminated by the system before completing
to be reassigned to another site.

2.4 Brokerage Characterization

Resources (queues) presented in the database together with the wide set of
static parameters such as walltime, CPU cores, memory, disk space etc. Same
parameters can be provided within job definition to specify strict demands to
the resource where the job can be executed. Both resources (queues) and jobs
with parameters stored in the PanDA database.



Production Workload Management on Leadership Class Facilities 7

Also PanDA server maintains in the DB the dynamic information for
queues about the number of defined, activated and running jobs and also
the pilots statistics - number of requests of different types like “get job” or
“update job status”.

PanDA Broker - key component of the BigPanDA workflow automation
- is an intelligent module designed to prioritize and assign PanDA jobs (job
passed the brokerage transitioning from “defined” to the “assigned” state) to
available computing resources on the basis of job type, software availability,
input data and its locality, real-time job statistics, available CPU and stor-
age resources and etc. Users are able to specify explicitly the resource while
job submission or they can rely on automated brokerage engine. Full power
of the PanDA brokerage integrated with another distributed computing and
data management tools (internal and external with respect to the PanDA) is
actively used in ATLAS experiment. In this paper we will present and will
benchmark the basic brokerage functionality provided to all users.

The basic brokerage algorithm works the following way. It takes the lists
of submitted jobs and available queues. Then each job is checked against each
queue by set of parameters if the queue meets the jobs static demands like
number of CPU core or the walltime. All queues passed the round are pro-
ceeding to the short list where for each queue Broker calculates the weight on
the basis of current job statistics for given queue according to the formula (1).
Job finally assigning to the queue with bigger weight. Weight calculation algo-
rithm fo ATLAS is more complicated and taking into account clouds default
weights, network bandwidth, sharing policies etc.

The basic brokerage algorithm works the following way. Having the list of
the submitted jobs, each job is checked against available resources as shown
in SELECT CAND (Alg. ). Available resources presented as the set of defined
PanDA queues: res = queue1, . . . , queuen. For each queue in the set (3) we
checking if it’s satisfying the parameters of job (4). Successfully passed queues
are concatenating to the list of candidate-queues (5).

SATISFY JOB function (Alg. ) is used to check if the queue attributes
can scope job parameters. Set of the job parameters defined as par1, . . . ,
parm represents the software/hardware demands to the resource like CPU core
count, walltime, SW releases etc. Each of these parameters can be mapped to
the set of queue attributes defined as atr1, . . . , atrn, where n ≥ m. So for each
job parameter (2) we check if it can be satisfied with the corresponding queue
attribute (3). Finally queue passes the test if it copes all the jobs parameters
(5).

The procedure SATISFY REQ (Alg. ) is responsible to testing if the value
of the job parameter is in the set of allowed values val1, . . . , valk of the queue
attribute (2).

Require: par; atr = (val1, . . . , valk)
Ensure: True or False
1: procedure SATISFY REQ(par, atr)
2: if par.value in atr then:



8 First Author, Second Author

3: return True
4: return False

Require: job = {par1, . . . , parm}; queue = {atr1, . . . , atrn}
Ensure: True or False
1: procedure SATISFY JOB(queue, job)
2: for all par in job do:
3: if SATISFY REQ(par, atr)= False then
4: return False
5: return True

Require: job; res = (queue1, . . . , queuen)
Ensure: cand
1: procedure SELECT CAND(job, res)
2: cand ← NONE
3: for all queue in res do:
4: if SATISFY JOB(queue,job) = True then
5: cand ∪ queue
6: return True

As it was shown SELECT CAND procedure provides generates the short
list of the candidates queues. SELECT QUEUE (Alg. ) taking the short list of
the candidate-queues as the set queue1, . . . , queuen. For each queue (4) Broker
calculates the weight (5) on the basis of current job statistics for given queue
according to the formula (1). Job finally assigning to the queue with bigger
weight (6-7). Weight calculation algorithm fo ATLAS is more complicated
and taking into account clouds default weights, network bandwidth, sharing
policies etc

Require: cand = (queue1, . . . , queuen)
Ensure: res queue
1: procedure SELECT QUEUE(cand)
2: res queue ←queue1
3: max weight ← 0
4: for all queue in cand do:
5: queue.weight ← WEIGHT CALC(queue)
6: if queue.weight > max weight then
7: res queue← queue
8: return res queue

manyAssigned = max(1,min(2,
assigned

activated
)),

weight =
running + 1

(activated + assigned + sharing + defined + 10) ∗manyAssigned
(1)

Brokerage time in general can be estimated as (2). Basically it’s time the
job transits from “defined” to assigned state.



Production Workload Management on Leadership Class Facilities 9

T =

Q∑
i=1

J∑
j=1

Tij (2)

In formula (2) Q is the number of available queues, J is the number of
concurrently submitted jobs and Tij is the time to process job j for queue i.
The processing time includes the check if queue meet demands of the job. Then
for successfully selected queues the weight is calculating and job assigning for
the queue with bigger weight. Hence the time T can be presented as sum (3).

T = t1 + t2 + t33 + C (3)

In formula 3, t1 is the time to make checks if queue meet demands of the
job, t2 is the time for weight calculation and finally t3 is the time spent to
assign job to the resulted queue.

Under the assumption that all jobs can run on the same average number
of queues N then we can transform equation as (4).

T = J ∗

Q−N∑
i=1

t1j +

N∑
j=1

(tmax + t2j) + t3

 + C, t1 < tmax (4)

Here N is the average number of queues which met all demands of each
job. As shown in the SATISFY JOB algorithm the function returns FALSE
as soon as the first discrepancy in the job parameter and queue attributes is
met. Hence for for all other Q-N queues the time to make checks t1 will be
less than tmax.

Here N is the average number of queues which met all demands of each
job. As shown in the SATISFY JOB algorithm the function returns False as
soon as the first discrepancy in the job parameter and queue attributes is met.
Hence for for all other Q-N queues the time to make checks t1 will be less than
tmax.

Again taking assumption that the times for different queues are equal we
can streamline the equation like (5)

T =J ∗ ((Q−N) ∗ t1 + N ∗ (tmax + t2) + t3) + C

=J ∗ (Q ∗ t1 + N ∗ (tmax− t1 + t2) + t3) + C,where (tmax− t1) > 0
(5)

In order to estimate dependency of brokerage time from the number of
concurrently submitted jobs we deployed a dedicated test instance of PanDA
server at ORNL. PanDA was configured to use ten testing queues. Two of
the queus was configured to provide 8 CPU cores and eight remaining queues
provide 2 cores. All other parameters are configured equal for all queues.

Job submission client was configured to generate and send to the server
the lists of equal jobs where each job demands 4 CPU cores. PanDA testing-
instance was adjusted to simulate the brokerage two queues will be selected as
meeting the criteria of cores number. Then due to simulation of job statistics



10 First Author, Second Author

Fig. 2 Brokerage time dependency on number of concurrently submitted jobs

on that selected queues the jobs will be assigned to the queue with bigger
weight. Brokerage time dependency on number of concurrently submitted jobs
is shown in figure.

For this experiment we measured the time for a jobs to transit from the
“Defined” status to the “Activated”. As in the test environment the JEDI
system wasn’t used and injection of the jobs was done using the simple python
client interaction with PanDA REST API the first stated of the job indicated
in PanDA is “Defined” and corresponds to the creation time. Also during this
measurements we used no-input jobs. Hence the status of the jobs progressed
to the “Activated” immediately after “Defined”. In general the time to check
input files can be considered as constant for the constant number of input files.
So omitting the “Assigned” state in this testing environment is acceptable.

3 Deploying PanDA Workload Management System on Titan

– Start of project and proof of concept, restrictions caused by policy of usage
of OLCF

– Adaptation of already existed PanDA application to work with Titan
– Many To One concept (Many jobs - one pilot)
– First implementation (Multijob Pilot as evolution of PanDA Pilot)
– Scalability limitations
– Harvester

Consistent with its leadership-computing mission of enabling applications
of size and complexity that cannot be readily performed using smaller facilities,
the OLCF prioritizes the scheduling of large capability jobs (or “leadership-
class” jobs). OLCF uses batch queue policy on the Titan systems to sup-



Production Workload Management on Leadership Class Facilities 11

port the delivery of large capability-class jobs. (Reference Titan Schedul-
ing Policy, https://www.olcf.ornl.gov/for-users/system-user-guides/
titan/running-jobs/)

OLCF deploys Adaptive Computing’s MOAB resource manager. [Refer-
ence: Adaptive Computing Administrators Guide, 6.1.2, http://docs.adaptivecomputing.
com/9-1-2/MWM/Moab-9.1.2.pdf] MOAB resource manager supports features
that allow it to directly integrate with Cray’s Application Level Placement
Scheduler (ALPS), a lower-level resource manager unique to Cray HPC clus-
ters. [Reference: Ezell et al., CUG 2013, https://cug.org/proceedings/

cug2013_proceedings/includes/files/pap177.pdf].

MOAB will schedule jobs in the queue in priority order, and priority jobs
will be executed given the availability of required resources. As a DOE Lead-
ership Computing Facility, the OLCF has a mandate that a large portion of
Titan’s usage come from large, leadership-class (aka capability) jobs. To en-
sure the OLCF user programs achieve this mission, OLCF policies strongly
encourage through queue policy users to run jobs on Titan that are as large as
their code will warrant. To that end, the OLCF implements queue policies that
enable large jobs to be scheduled and run in a timely fashion. (Ref. Titan User
Manuel, https://www.olcf.ornl.gov/for-users/system-user-guides/titan/
running-jobs/) As a result, leadership-class jobs advance to the high-priority
jobs in the queue.

If a priority job does not fit, i.e., required resources are not available, a
resource reservation will be made for it in the future when availability can
be assured. Those nodes are exclusively reserved for that job. When the job
finishes, the reservation is destroyed, and those nodes are available for the
next job. Reservations are simply the mechanism by which a job receives ex-
clusive access to the resources necessary to run the job. [Reference: Ezell et
al., CUG 2013] However, if policy desires a priority reservation to be made for
more than one job, one can specify the creation of reservations for the top N
priority jobs in the queue by increasing the keyword RESERVATIONDEPTH
to be greater than one. The priority reservation(s) will be re-evaluated (and
destroyed/re-created) every scheduling iteration in order to take advantage of
updated information.

Beyond the creation of reservations for the top priority jobs, Moab now
switches to backfill mode and continues down the job queue until it finds a job
that will be able to start and won’t disturb the priority reservations made for
the highest priority queued jobs, specified by the value of RESERVATION-
DEPTH. As time continues and the scheduling algorithm continues to iterate,
Moab continues to evaluate the queue for the highest priority jobs. If the high-
est priority job found will not fit within the available resources, its reservation
is updated, but left where it is. Switching to “backfill mode”, Moab searches for
a job in the queue that will be able to start and complete without disturbing
the priority reservations. If such jobs are started, they will run within back-
fill. If no such backfill jobs are present in the queue, then available compute
resources will remain unutilized.

https://www.olcf.ornl.gov/for-users/system-user-guides/titan/running-jobs/
https://www.olcf.ornl.gov/for-users/system-user-guides/titan/running-jobs/
http://docs.adaptivecomputing.com/9-1-2/MWM/Moab-9.1.2.pdf
http://docs.adaptivecomputing.com/9-1-2/MWM/Moab-9.1.2.pdf
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap177.pdf
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap177.pdf
https://www.olcf.ornl.gov/for-users/system-user-guides/titan/running-jobs/
https://www.olcf.ornl.gov/for-users/system-user-guides/titan/running-jobs/


12 First Author, Second Author

In describing how the PanDA Workload management system is deployed
on Titan, we necessarily describe it integration with the Moab Workload man-
agement system. In so doing, two rather different approaches to interfacing the
PanDA managed work on Titan are availed: “Batch Queue Mode” and “Back-
fill Mode”. In “Batch Queue Mode”, PanDA interacts with Titan’s Moab
scheduler in a static, non-adaptive manner to executing the work to be per-
formed. In “Backfill Mode”, PanDA dynamically shapes the size of the work
deployed on Titan to capture resources that may otherwise go unused be-
cause the size of the backfill opportunity is otherwise too small or to brief in
duration.

In doing so, we demonstrate how Titan is more efficiently utilized by the
injection and mixing of small and short-lived tasks in backfill with regular
payloads. Cycles otherwise unusable (or very difficult to use) are used for
science, thus increasing the overall utilization on Titan without loss of overall
quality-of-service. The conventional mix of jobs at OLCF cannot be effectively
backfilled because of size, duration, and scheduling policies. Our approach is
extensible to any HPC with “capability scheduling” policies.

3.1 PanDA integration with Titan

As we described in previously PanDA is a pilot based WMS. On the Grid
pilot jobs are submitted to batch queues on compute sites and wait for the
resource to become available. When a pilot job starts on a worker node it
contacts the PanDA server to retrieve an actual payload and then, after nec-
essary preparations, executes the payload as a sub process. The PanDA pilot
is also responsible for a job’s data management on a worker node and can per-
form data stage-in and stage-out operations. Figure 3 shows schematic view
of PanDA interface.

Taking advantage of its modular and extensible design, the PanDA pilot
code and logic has been enhanced with tools and methods relevant for work
on HPCs. The pilot runs on Titan’s data transfer nodes (DTNs) which allows
it to communicate with the PanDA server, since DTNs have good (10 GB/s)
connectivity to the Internet. The DTNs and the worker nodes on Titan use a
shared file system which makes it possible for the pilot to stage-in input files
that are required by the payload and stage-out produced output files at the end
of the job. In other words, the pilot acts as a site edge service for Titan. Pilots
are launched by a daemon-like script which runs in user space. The ATLAS
Tier 1 computing center at Brookhaven National Laboratory is currently used
for data transfer to and from Titan, but in principle that can be any ATLAS
site. Figure 4 shows schematic view of PanDA interface with Titan. The pilot
submits ATLAS payloads to the worker nodes using the local batch system
(Moab) via the SAGA (Simple API for Grid Applications) interface [Saga ref
needed]. It also uses SAGA for monitoring and management of PanDA jobs
running on Titan’s worker nodes. One of the features of the described system is
the ability to collect and use information about Titan status, e.g., free worker



Production Workload Management on Leadership Class Facilities 13

Fig. 3 A concept for the launching of multiple PanDA jobs on HPC with the limited number
of Job Slots in comparison with regular GRID launch

nodes in real time. The pilot can query the Moab scheduler about currently
unused nodes on Titan, using the “showbf” command, and check if the free
resource availability time and size are suitable for PanDA jobs, and conforms
with Titan’s batch queue policies. The pilot transmits this information to the
PanDA server, and in response gets a list of jobs intended for submission on
Titan. Then based on the job information, it transfers the necessary input
data from the ATLAS Grid, and once all the necessary data is transferred the
pilot submits jobs to Titan using an MPI wrapper.

The MPI wrappers are Python scripts that are typically workload specific
since they are responsible for setup of the workload environment, organization
of per-rank worker directories, rank-specific data management, optional input
parameters modification, and cleanup on exit. When activated on worker nodes
each copy of the wrapper script after completing the necessary preparations
will start the actual payload as a subprocess and will wait until its completion.
This approach allows for flexible execution of a wide spectrum of Grid-centric
workloads on parallel computational platforms such as Titan.

Since ATLAS detector simulations are executed on Titan as discrete jobs
submitted via MPI wrapper, parallel performance can scale nearly linearly,
potentially limited only by shared file system performance (discussed below).
Currently up to 20 pilots are deployed at a time, distributed evenly over 4
DTNs. Each pilot controls from 15 to 350 ATLAS simulation ranks per sub-
mission. This configuration is able to utilize up to 112,000 cores on Titan. We
expect that these numbers will grow in the near future. Figure 4.4-1 shows Ti-
tan core hours consumed by the ATLAS Geant4 simulations from January 2017
to April 2018. Please note that during this time our Director’s Discretionary
project ran 24/7 in pure backfill mode with lowest priority and no defined
allocation. In 2017-2018 average resource utilization exceeded 10M core-hours
per month and for February and March of 2018 reached 22M core-hours per
month. We expect that average monthly utilization will grow due to further
optimization of the workload management system.



14 First Author, Second Author

Fig. 4 A concept of integration of LCF(HPC) with PanDA

Fig. 5 Implementation of PanDA integration with OLCF

4 Performance Characterization on Titan

4.1 Profiling of the performance of the end-to-end workflow on Titan

– There are two primary objectives:
– 1. some way to characterize the performance (efficiency) of PanDa to per-

form WLMS on LCF (internal), and
2. some way to characterize the impact of PanDA on Titan (external fac-

ing).
– Abstract Model of Workload Management System: The common function-

ality that “all” distributed workload management systems perform, in-
clude:
– Manage Payload (i.e., the full set of application workflow)
– Get resource information
– T2 function of N



Production Workload Management on Leadership Class Facilities 15

Fig. 6 AthenaMP worker occupancy for typical ATLAS detector simulation job with 1000
input events

Fig. 7 AthenaMP worker occupancy for typical ATLAS detector simulation job with 50
input events.

– Workload Shaping: i.e., decompose Payload into tasks
– Job Shaping: i.e., bundle tasks into jobs of defined configuration on a

resource
– Execution management i.e., submit/launch jobs and ensure complete-

ness
– Data and metadata management, i.e., update central POP with job

state information.

Trying to derive the TTC using the above abstract model of D-WLMS
should be our goal, not a fine grain description of time taken.



16 First Author, Second Author

These are categories of functionality, not necessarily states. Not all cate-
gories will be exclusive (i.e., unlike states of a job).

Suggest as a possible consideration to consider the production stream

4.2 Impact of ATLAS CSC108 on Titan

The CSC108 project operates under the assumption that the constraints im-
posed on its jobs by OLCF prevent it from competing for resources with other
projects. In order to assess the effectiveness of this strategy, we have pursued
several lines of inquiry by sampling data from the MOAB scheduler on Titan.

Note that code supporting this section is available at https://github.

com/ATLAS-Titan/moab-data.

4.2.1 Blocking Probability

We begin with a simple model that defines an event called a “block” and then
detects its occurrences within the data.

Let Ci be the abstract resources in use by CSC108 at the ith sample point
in time, and let Ui be the unused (idle) resources remaining on Titan. We then
define a boolean Bi representing a “block” to be 1 if there exists at least one
job at the ith sample point which requests (Ci + Ui) resources or less, and we
define Bi to be zero otherwise.

Summing Bi over all i gives a count of sample points at which a block
occurred, and dividing that count by the number of total sample points yields
a quantity we will term a “blocking fraction”.

To use this model for our concrete data set, we define the resources in
question to be requested processors (or requested nodes).

(Specific numbers and graphs go here.)

5 Workload Management Beyond HEP

The objective of each subsection is to: (i) describe the science; and (ii) detail
what customizations had to be done – either on PanDA or the Titan end to
support the science driver. We will then conclude this section with a summary.

5.1 PanDA WMS beyond HEP

Traditionally computing in physics experiments at the basic level is usually in-
dependent processing of the input files to produce the output. This processing
in referring in the paper as a job. Processing algorithm usually utilizes some
experiment-specific software which may require parameterization and even ad-
ditional configuration files. In the case if such a configuration file is specific
for each job it can be defined in a job as another input file. Also experiment

https://github.com/ATLAS-Titan/moab-data
https://github.com/ATLAS-Titan/moab-data


Production Workload Management on Leadership Class Facilities 17

software may produce some additional files along with the primary output
and they need to be stored. For instance PanDA pilot itself produces the tar-
archive file containing the logs its own logs and the experiments software logs.
Processing algorithm (referenced as “transformation script”) responsible for
the correct launching the experiment software and provide all necessary input
information including the configuration and run parameters. PanDA job def-
inition is only defines the launching command for the transformation script.
This launching command is referring as a payload.

The following components are usually provided and controlled by the ex-
periment groups outside from PanDA core components.

– Transformation scripts. User groups should define a complete set of the
transformations scripts to cover all possible SW usage. In the case if the
same software is used and only the run parameters, configuration and in-
put/output file names are changing, the single transformation script should
be able to cope this.

– Input/output files conventions. The size of the input files often adjusted in
a way to balance of the total processing walltime and flexibility in order
to cope the failure risks. There is often case that the equal sized input
files are required relatively equal processing time and produce equal sized
output. Also input files are often named conventionally and grouped in the
datasets by some attributes. PanDA job definition allows to provide name
for the input/output datasets.

The real workflow for each scientific group provides a lot of additional
requirements and constraints. A common example is a specific order of the
jobs execution. Also implementation of the dedicated workflows demands an
integration with existing experiment computing infrastructure or even devel-
opment an additional components. This includes the issues with data manage-
ment, user authentication, monitoring, workflow control and etc.

PanDA system may be the best solution for the new experiments and
scientific groups by diversity of provided advantages. The main motivations
for users are:

– Powerful workload management. Automation of the jobs handling, moni-
toring and logging.

– Streamlining the usage of the computing resources. Possibility for users
to run their jobs on diversity of the computing resources. Local resource
schedulers, and policies are transparent for the users.

– PanDA native data handling. PanDA provides a diverse set of the plugins
to support data stage-in/-out from the remote storages and different data
movement tools of different types.

– Close integration with OLCF. Being integrated with OLCF PanDA system
also became attractive for many scientific groups already utilizing OLCF
resources or those who wish to get use them.



18 First Author, Second Author

5.2 PanDA instance at OLCF

In March 2017, we implemented a new PanDA server instance within OLCF
operating under Red Hat OpenShift Origin [Red Hat OpenShift Origin] - a
powerful container cluster management and orchestration system in order to
serve various experiments at Titan supercomputer. By running on-premise
Red Hat OpenShift built on Kubernetes [Kubernetes], the OLCF provides
a container orchestration service that allows users to schedule and run their
HPC middleware service containers while maintaining a high level of support
for many diverse service workloads. The containers have direct access to all
OLCF shared resources such as parallel filesystems and batch schedulers. With
this PanDA instance, we implemented a set of demonstrations serving diverse
scientific workflows including physics, biology studies of the genes and human
brain, and molecular dynamics studies:

– Biology / Genomics. In collaboration with Center for Bioenergy Innova-
tion at ORNL the PanDA based workflow for epistasis researches was es-
tablished. Epistasis is the phenomenon where the effect of one gene is
dependent on the presence of one or more “modifier genes”, i.e. the ge-
netic background. GBOOST application [GBOOST], a GPU-based tool
for detecting gene-gene interactions in genome-wide case control studies,
was used for initial tests.

– Molecular Dynamics. In collaboration with Chemistry and Biochemistry
department of the University of Texas Arlington we implemented test to
try out PanDA to support the Molecular Dynamics study “Simulating En-
zyme Catalysis, Conformational Change, and Ligand Binding/Release”.
The CHARMM (Chemistry at HARvard Macromolecular Mechanics) [CHARMM]
a molecular simulation program was chosen as a basic payload tool. CHARMM
design for hybrid MPI/OpenMP/GPU computing.

– IceCube. Together with experts from the IceCube experiment we imple-
mented the demonstrator PanDA system. IceCube [IceCube] is a particle
detector at the South Pole that records the interactions of a nearly mass-
less subatomic particle called the neutrino. Demonstrator includes the use
of NuGen package (a modified version of ANIS [ANIS] that works with
IceCube software) - GPU application for atmospheric neutrinos are simu-
lations packed in singularity container and remote stage-in/-out the data
from GridFTP [GridFTP] storage with GSI authentication.

– BlueBrain. In 2017, a R&D project was started between BigPanDA and
the Blue Brain Project (BBP) [BBP] of the Ecole Polytechnique Federal de
Lausanne (EPFL) located in Lausanne, Switzerland. This proof of concept
project is aimed at demonstrating the efficient application of the BigPanDA
system to support the complex scientific workflow of the BBP which re-
lies on using a mix of desktop, cluster and supercomputers to reconstruct
and simulate accurate models of brain tissue. In the first phase of this
joint project we supported the execution of BBP software on a variety
of distributed computing systems powered by BigPanDA. The targeted
systems for demonstration included: Intel x86-NVIDIA GPU based BBP



Production Workload Management on Leadership Class Facilities 19

clusters located in Geneva (47 TFlops) and Lugano (81 TFlops), BBP
IBM BlueGene/Q supercomputer [BlueGene](0.78 PFLops and 65 TB of
DRAM memory) located in Lugano, the Titan Supercomputer with peak
theoretical performance 27 PFlops operated by the Oak Ridge Leadership
Computing Facility (OLCF), and Cloud based resources such as Amazon
Cloud.

– LSST. A goal of LSST (Large Synoptic Survey Telescope) project is to con-
duct a 10-year survey of the sky that is expected to deliver 200 petabytes of
data after it begins full science operations in 2022. The project will address
some of the most pressing questions about the structure and evolution of
the universe and the objects in it. It will require a large amount of simula-
tions, which model the atmosphere, optics and camera to understand the
collected data. For running LSST simulations with the PanDA WMS we
have established a distributed testbed infrastructure that employs the re-
sources of several sites on GridPP [GridPP] and Open Science Grid (OSG)
[OSG] as well as the Titan supercomputer at ORNL. In order to submit
jobs to these sites we have used a PanDA server instance deployed on the
Amazon AWS Cloud.

– LQCD. Lattice QCD (LQCD) [LQCD] is a well-established non-perturbative
approach to solving the quantum chromodynamics theory of quarks and
gluons. Current LQCD payloads can be characterized as massively paral-
lel, occupying thousands of nodes on leadership-class supercomputers. It is
understood that future LQCD calculations will require exascale comput-
ing capacities and workload management system in order to manage them
efficiently.

– nEDM. Precision measurements of the properties of the neutron present
an opportunity to search for violations of fundamental symmetries and to
make critical tests of the validity of the Standard Model of electroweak
interactions. These experiments have been pursued [neutron] with great
energy and interest since the discovery of neutron in 1932. The goal of the
nEDM [nEDM] experiment at the Fundamental Neutron Physics Beamline
at the Spallation Neutron Source (Oak Ridge National Laboratory) is to
further improve the precision of this measurement by another factor of 100.

To isolate the workflows of different groups and experiments, dedicated
queues were defined at the PanDA server. Presumably in next steps we will
provide the security mechanisms that will provide the access to each queue for
job submission and dispatching only for authorised users. Also, the PanDA
server provides the tools to customise environment variables, system settings
and workflow algorithms for different user groups. Also this split of the different
groups workflows on the level of PanDA queues simplifies jobs monitoring via
the web based PanDA tool.

In collaboration with the dedicated scientific groups representatives, we
implemented the “transformation” scripts containing complete definition of
the processing actions (set of specific software and general system commands)
are has to be applied to the input data to produce the output. The transfor-



20 First Author, Second Author

Table 1 Please write your table caption here

Experiment Payload Jobs Nodes Walltime Input data Output data

Genomics GBOOST 10 2 30 min 100 MB 300 MB
Molecular Dynamics CHARMM 10 124 30-90 min 10 KB 2-6 GB
IceCube NuGen 4500K 1 120 min 500 KB 10KB - 4GB
LSST/DESC Phosim 20 2 600 min 700 MB 70 MB
LQCD QDP++ 10 8000 700 min 40 GB 150 MB
nEDM GEANT 10 200 20 min 120 MB 20 MB

mation script then can be addressed by its name. Client tool provided to the
users allows to submit jobs to the PanDA server with authentication based on
grid certificates.

Responsible group representative also authorized to run pilots launcher
daemon. Daemon launches the pilots. Number of parallel running pilots can be
configured. Pilots are running and interacts with the PBS under user account
and with Titan group privileges of the responsible representative.

The most important parameters of conducted tests are presented in the
table

5.3 Summary

The overview of the successfully implemented demonstrations of diverse work-
flows implementation via PanDA shows that PanDA model can cope the chal-
lenges of the different experiments and user groups and also provide possibility
for extensions beyond the core components set. The proof of concept was re-
ceived from all considered experiments representatives and results that PanDA
is considered as a possible solution. Preproduction utilization of PanDA is
now under investigation with BlueBrain, IceCube, LSST, nEDM experiments,
LQCD uses PanDA for Production.

References

1. Author, Article title, Journal, Volume, page numbers (year)
2. Author, Book title, page numbers. Publisher, place (year)


	Introduction
	PanDA Workload Management System: Software System Overview
	Deploying PanDA Workload Management System on Titan
	Performance Characterization on Titan
	Workload Management Beyond HEP

