
Measurement of inclusive jets and dijets with ATLAS

Ondřej Hladík Supervised by: Alexander Kupčo

Institute of Physics of the Czech Academy of Sciences

8th October, 2018

- dominant high p_T processes at hadron colliders
- testing of QCD
- events with the highest transfer momentum $\Delta x \Delta q \sim \hbar$ (1TeV $\approx 10^{-19}$ m)
- searching for quark compositeness, extra dimensions, ...
- resonances

Event and jet selection

Event selection:

- GRL
- Event Cleaning (data only):
 - Corrupted data or incomplete data are rejected by LarError, TileError, CoreFlag and SCTFlag.
- 1 PV with at least 2 tracks.

Jet collection:

• anti- k_T , EMTopo, R = 0.4 jets

Jet calibration:

• appropriate JetEtMiss recommendations

Jet cleaning:

- Cleaning cut: TightBad for leading jets, LooseBad for the rest.
- TightBad was especially designed to remove non-collision background:
 - https://cds.cern.ch/record/2016323

Inclusive jets selection:

- $p_T > 100 \text{ GeV}$
- |*y*| < 3.0

Dijets selection:

• Second leading jet $p_{T2} > 75$ GeV

•
$$H_T = p_{T1} + p_{T2} > 200 \text{ GeV}$$

• |*y*| < 3.0

Definition of measured variables

The **inclusive-jet** cross-section is measured as a function of the jet p_T and absolute jet rapidity |y|.

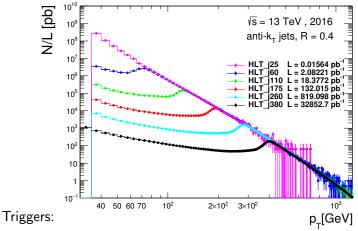
The full rapidity range is divided in six equidistant jet rapidity bins:

$$|y| < 0.5, \quad 0.5 \le |y| < 1.0, \quad 1.0 \le |y| < 1.5,$$

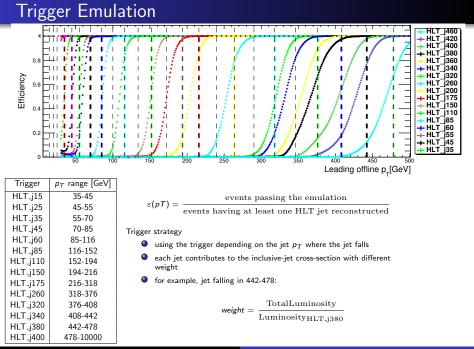
 $1.5 \le |y| < 2.0, \quad 2.0 \le |y| < 2.5, \quad 2.5 \le |y| < 3.0.$

The **dijet** cross-section is measured as a function of the dijet invariant mass

$$m_{12} = \sqrt{\left(P_1 + P_2
ight)^2}$$

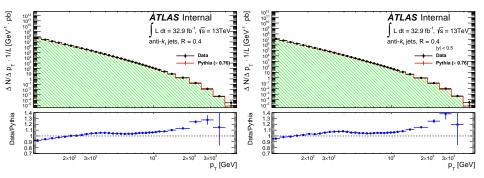

and the half absolute jet rapidity separation

$$y^* = \frac{1}{2} |y_1 - y_2|,$$

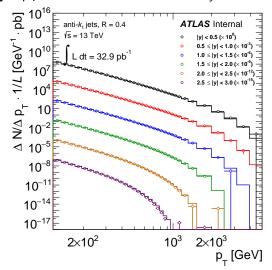

The full y^* range is split into 6 equidistant bins:

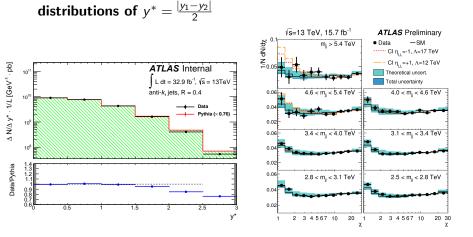
$$y^* < 0.5, \quad 0.5 \le y^* < 1.0, \quad 1.0 \le y^* < 1.5,$$

 $1.5 \le y^* < 2.0, \quad 2.0 \le y^* < 2.5, \quad 2.5 \le y^* < 3.0.$


pT spectra of triggers with luminosity info

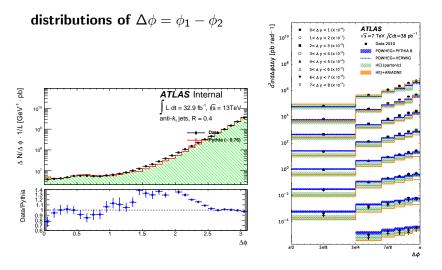
- L1 hardware-based, E_T cut on tiles 8×8
- HLT software-based, standard anti- k_T jet algorithm


inclusive jet p_T


• uncorrected jet p_T spectra

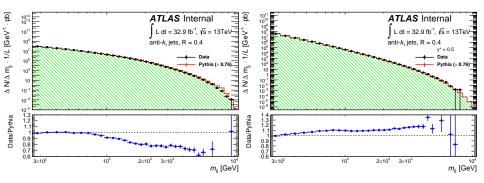
Inclusive jets

inclusive jet p_T distribution for different y bins

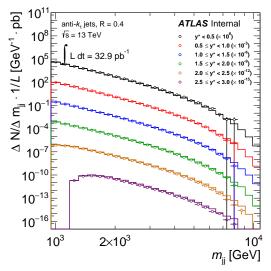


Dijets

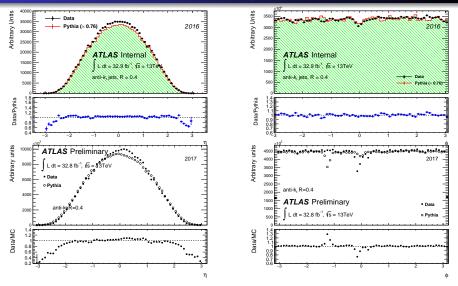
 y^{*} is basically angular distribution in parton-parton CMS and is sensitive to new physics ⇒ searching for quark compositeness


•
$$\chi = e^{2y*} = e^{|y_1 - y_2|}$$

• jets in LO are precisely back-to-back $\implies \Delta \phi$ depends e.g. on initial state radiation

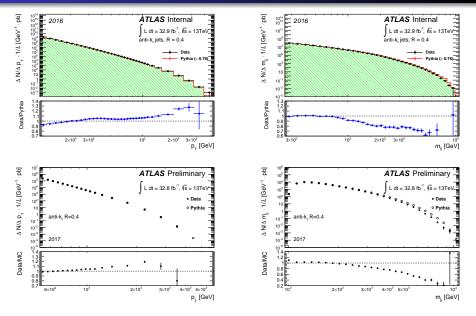

Dijets

dijet invariant mass m_{ii}



• $m_{12}^2 = (P_1 + P_2)^2 = 2p_{T1}p_{T2}(\cosh(\Delta \eta) - \cos(\Delta \phi))$

m_{ii} distribution for different y^* bins



Control plots: distributions of η and ϕ

Observed the two known dead modules ($\phi \in [-0.1, -0.2]$ and $\phi \in [0.2, 0.3]$). Masked cells modelled but not present in data ($\sim \phi = -1.2$).

Inclusive jets and dijets

- finalizing the next steps of analysis (unfolding, systematics, ...)
- checking the new 2018 data
- preparing for final measurement of inclusive jets and dijets in full Run2 dataset
- studying the potential new variables to measure e.g. triple-differential dijet cross section $\frac{d^3\sigma}{dp_{T,aye}dy^*dy_b}$