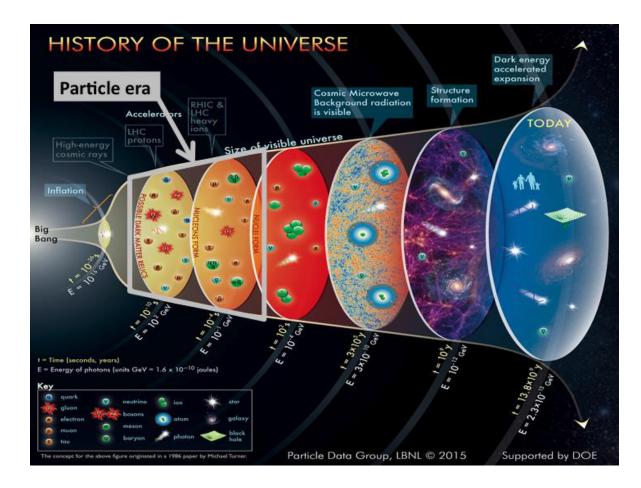



# Effects of cold nuclear matter on charm meson production

#### Lukáš Kramárik

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Standard Model and Quantum Chromodynamics 8.10. – 9.10.2018, Prague




- Probing quark-gluon plasma
- Cold nuclear matter effects
- Measured observables in pA and AA collisions
- The Solenoid Tracker At RHIC
- D<sup>0</sup> reconstruction with the TMVA Boosted Decision Trees in d+Au

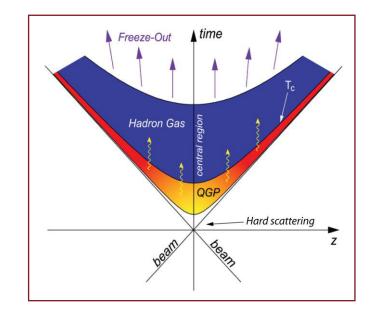
LUKÁŠ

### Quark-gluon plasma

• Hot and dense nuclear matter composed of deconfined quarks and gluons.



Expected to be present in the early universe, shortly after the Big Bang.

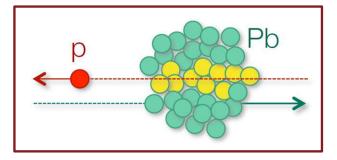

Studied in heavy-ion collisions at the **RHIC** and the **LHC**.

LUKÁŠ

#### Heavy-flavour quarks as a probe of QGP

- Heavy-flavour quarks possess **large masses** •
  - $\rightarrow$  they are produced primarily at the **initial stages of heavy-ion collisions**
  - $\rightarrow$  they experience the **whole evolution of the medium**
- QGP absorbs energy of partons travelling through it
  - $\rightarrow$  Heavy-flavour quarks are expected to **lose** less energy than light-flavour quarks

- **Collective behavior** of heavy-flavour guarks
  - $\rightarrow$  sensitive to the degree of thermalization in the QGP
  - $\rightarrow$  constrain the heavy-flavour quark diffusion coefficient

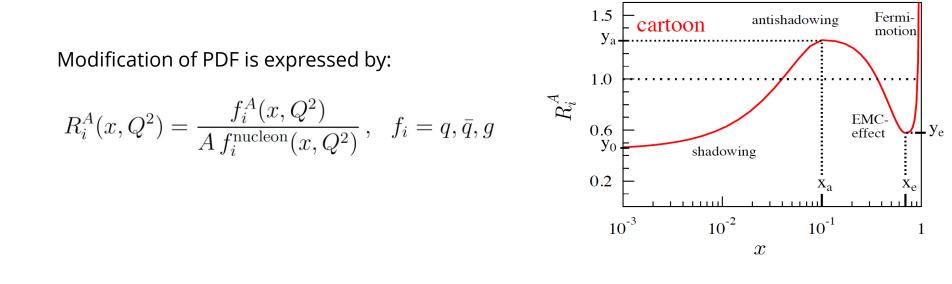



IIJKÁŠ

### Why run pA collisions?

#### Traditional heavy-ion playbook:

- nucleus-nucleus (AA) collisions
  - Quark-gluon plasma (QGP) creation
- proton-nucleus (pA) collisions:
  - Traditionally referred as control environment
  - Initial state effects
    - Additional nuclear matter can alter incoming wavefunction
    - Referred to as cold nuclear matter (CNM) effects
- proton-proton (pp) collisions
  - Establish baseline for observables in AA collisions
  - Study effects of colliding parton PDF on final meson spectra




#### However, pA collisions themselves present interesting phenomena!

Is there any hot medium (QGP droplets) created in pA?

**Modification of parton distribution function (PDF) in colliding nuclei**, with respect to colliding protons

- Different dynamics of partons within free protons with respect to those in nucleons
- These effects depend on *x* and on the scale of parton-parton interaction



### **Cold nuclear matter effects**

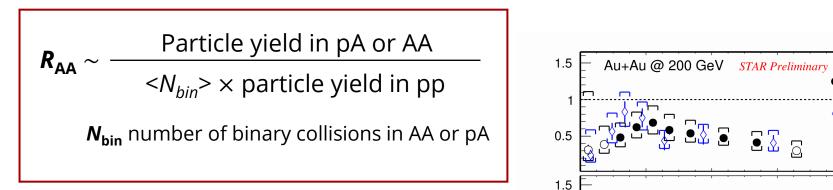
#### Parton saturation at small x

• Described within the **Colour Glass Condensate (CGC)** theoretical framework

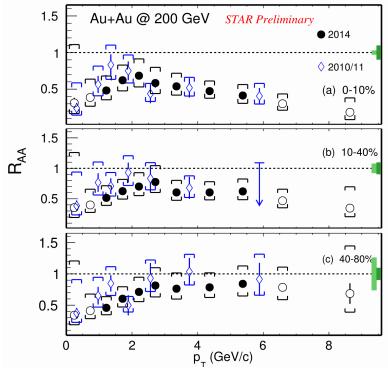
#### Multiple scattering of partons in the nucleus

- Before and/or after the hard scattering
- Leading to parton energy loss (radiative/collisional) or transverse momentum broadening (Cronin effect)

#### **Final-state inelastic interaction**


• Nuclear absorption of quarkonium bound states when passing through nucleus

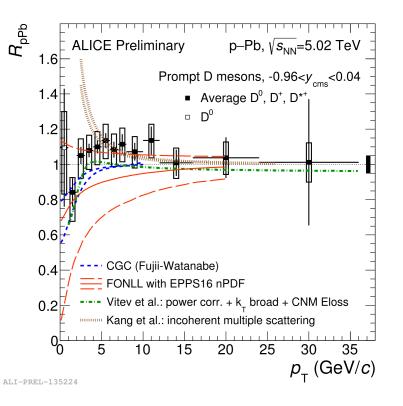
#### Possible heavy quarkonia dissociation by comovers


- Partons/hadrons close to quarkonium states at high energy may modify HF production
- The question is, if particles at high energy, produced in pA collisions could form a medium with some collectivity

# Nuclear modification factor

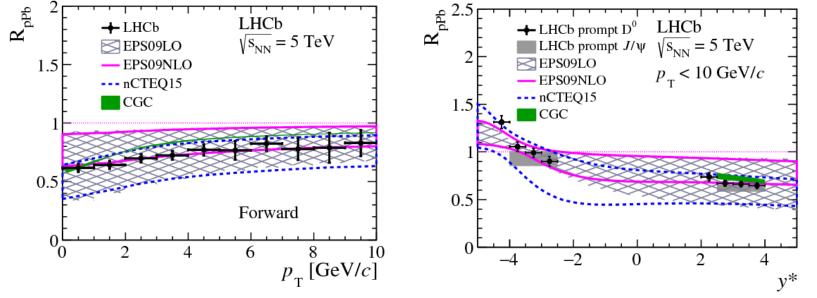
- Allows to study particle spectra modification induced by nuclear matter
- How far are observations in AA far from those in pp collisions?




- *R*<sub>AA</sub> of D<sup>0</sup> (open charm) meson exhibits **strong** suppression at high transverse momentum *p*<sub>T</sub>
- Suppression vanishes towards more peripheral collisions (smaller initial energy density)



LUKÁŠ


### Nuclear modification factor in p+Pb at ALICE

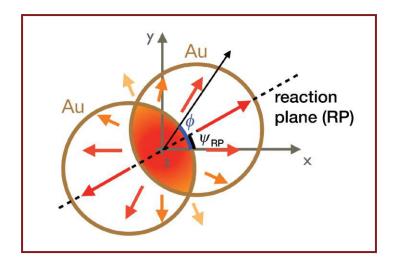
- $R_{\rm pPb}$  of D mesons is consistent with unity within uncertainties
  - Only small indication of CNM effects at lower *p*<sub>T</sub> (< 2 GeV/c)
     </li>
- Uncertainty of measured data does not confirm or exclude any of theoretical predictions



LUKÁŠ

### Nuclear modification factor in p+Pb at LHCb



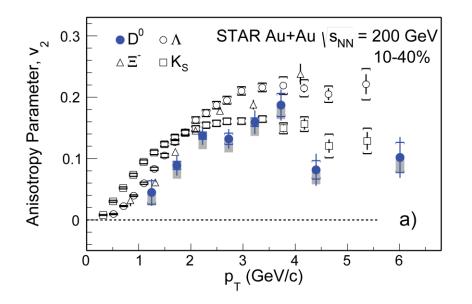

rapidity defined with respect to the direction of proton

- Nuclear modification factors in p+Pb are consistent for prompt D<sup>0</sup> and J/Ψ
- CGC describes the D<sup>0</sup> results as a function of both  $p_{T}$  and rapidity
- These measurements **do not consider** a classification in charged particle multiplicity
  - Potential modifications in high-multiplicity events are weakened

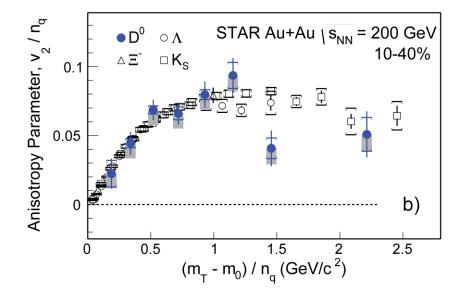
Ph

### **Elliptic and triangular flow**

Initial spatial anisotropy translates into final momentum anisotropy (due to pressure gradients).




Fourier expansion of the **particle yield** with respect to the reaction plane:


$$\boldsymbol{E}\frac{\mathrm{d}^{3}\boldsymbol{N}}{\mathrm{d}^{3}\boldsymbol{p}} = \frac{1}{2\pi}\frac{\mathrm{d}^{2}\boldsymbol{N}}{\boldsymbol{p}_{\mathrm{T}}\mathrm{d}\boldsymbol{p}_{\mathrm{T}}\mathrm{d}\boldsymbol{y}}\left(1 + \sum_{n=1}^{\infty} 2\boldsymbol{v}_{n}\cos\left[\boldsymbol{n}\left(\boldsymbol{\phi} - \boldsymbol{\psi}_{\mathrm{RP}}\right)\right]\right)$$

*v*<sub>2</sub>: elliptic flow*v*<sub>3</sub>: triangular flow

# Elliptic flow $v_2$ in Au+Au at STAR



- Light flavour v<sub>2</sub> suggests hydrodynamic behavior of a strongly interacting matter
- D<sup>0</sup> v<sub>2</sub>:
  - <u>p<sub>T</sub> < 2 GeV/c:</u> clear mass ordering
  - <u>p<sub>T</sub> > 2 GeV/c</u>: consistent with light mesons



•  $D^0 v_2$  follows NCQ (number of constituent quarks) scaling

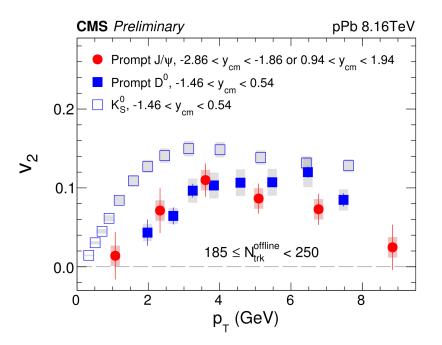
→ suggesting that **charm quarks flow** with the QGP

Is collectivity in AA collisions coming only from QGP?

### Elliptic flow $v_2$ in p+Pb at CMS

Results from high energy and high multiplicity events shows **significant flow of** light hadrons in small systems.

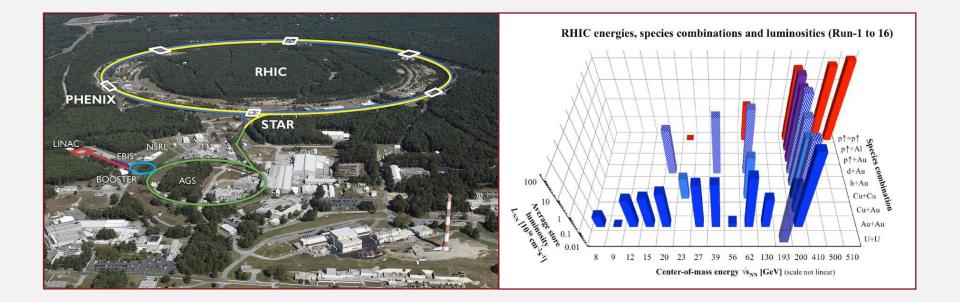
Is it the same for heavy and light quarks?


LUKÁŠ

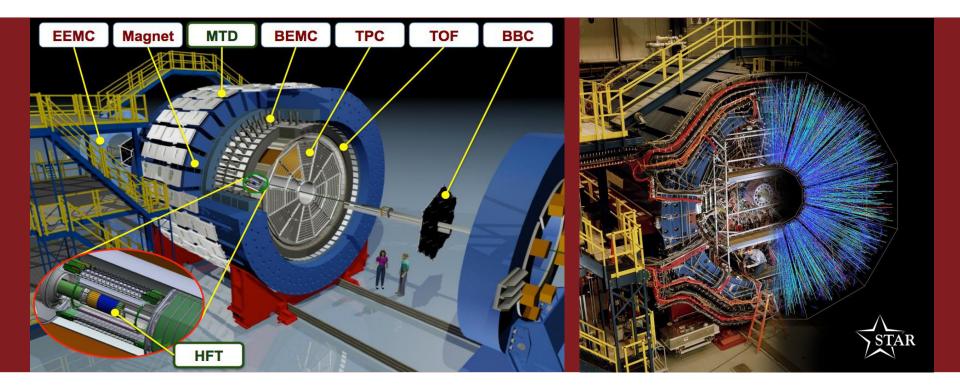
# Elliptic flow $v_2$ in p+Pb at CMS

Results from high energy and high multiplicity events shows **significant flow of light hadrons in small systems**.

Is it the same for heavy and light quarks?


- Comparison of elliptic flow ν<sub>2</sub> of D<sup>0</sup> meson and J/Ψ and light K<sup>0</sup><sub>s</sub> meson
- $D^0$  meson  $v_2$  may be driven by the light quark
  - $J/\Psi$  may disentagle this effect
- All displayed mesons have common  $v_2$  shape
- For  $p_T > 4$  GeV/*c*, D<sup>0</sup>  $v_2$  seems to be higher than for  $J/\Psi$



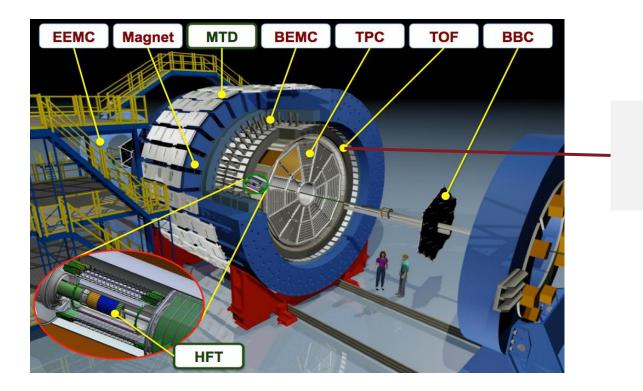

Hint of weaker collective behavior of heavy flavor quarks than light quarks.

#### **Relativistic Heavy-Ion Collider at BNL**

- Extremely versatile: has collected data colliding a large array of different heavy ions
- Only polarized proton collider in the world



- Designed to study the strongly interacting matter
- Excels in tracking and identification of charged particles at mid-rapidity with full azimuthal coverage
- Most of the subsystems are immersed in 0.5 T solenoidal magnetic field

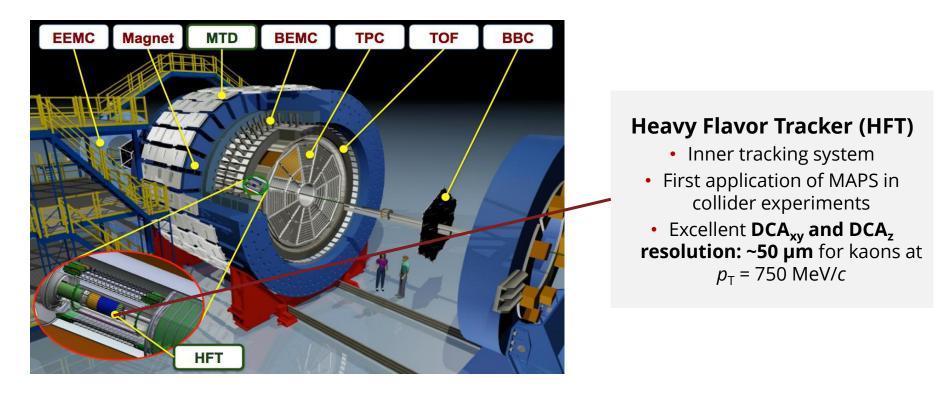



- Designed to study the strongly interacting matter
- Excels in tracking and identification of charged particles at mid-rapidity with full azimuthal coverage
- Most of the subsystems are immersed in 0.5 T solenoidal magnetic field



LUKÁŠ

- Designed to study the strongly interacting matter
- Excels in tracking and identification of charged particles at mid-rapidity with full azimuthal coverage
- Most of the subsystems are immersed in 0.5 T solenoidal magnetic field




#### Time of flight (TOF)

• particle identification at low transverse momentum  $p_{\rm T}$  via velocity  $\beta$ 

LUKÁŠ

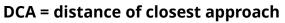
- Designed to study the strongly interacting matter
- Excels in tracking and identification of charged particles at mid-rapidity with full azimuthal coverage
- Most of the subsystems are immersed in 0.5 T solenoidal magnetic field

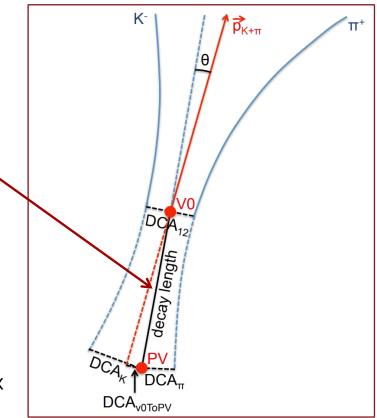


IUKÁŠ

Hadronic decay channel is used for reconstruction

•  $D^0 \rightarrow K^-\pi^+$ , branching ratio is (3.89 ± 0.04)%


LUKÁŠ


Hadronic decay channel is used for reconstruction

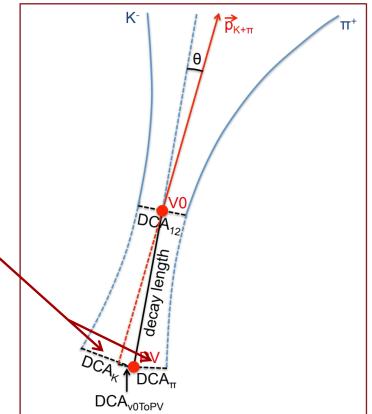
 $D^0 \rightarrow K^-\pi^+$ , branching ratio is (3.89 ± 0.04)%

Topological properties of D<sup>0</sup> decays used for their reconstruction:

- **decay length** of D meson candidate
  - ideally ~ 200 μm
- daughters DCA to primary vertex (PV)
  - ideally >> 0 μm
- DCA between daughter particles
  - ideally  $\rightarrow$  0  $\mu m$
- pointing angle θ between reconstructed D<sup>0</sup>
  momentum and decay length vector
  - ideally  $\rightarrow 0$
- reconstructed **D**<sup>0</sup> candidate **DCA** to primary vertex
  - ideally  $\rightarrow$  0  $\mu m$





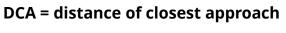

Hadronic decay channel is used for reconstruction

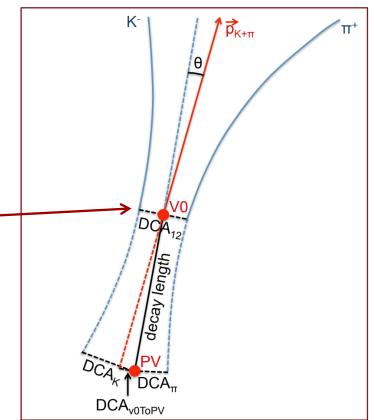
 $D^0 \rightarrow K^-\pi^+$ , branching ratio is (3.89 ± 0.04)%

Topological properties of D<sup>0</sup> decays used for their reconstruction:

- decay length of D meson candidate
  - ideally ~ 200 μm
- daughters DCA to primary vertex (PV).
  - ideally >> 0 μm
- DCA between daughter particles
  - ideally  $\rightarrow$  0  $\mu m$
- pointing angle θ between reconstructed D<sup>0</sup> momentum and decay length vector
  - ideally  $\rightarrow 0$
- reconstructed **D**<sup>0</sup> candidate **DCA** to primary vertex
  - ideally  $\rightarrow$  0  $\mu m$







Hadronic decay channel is used for reconstruction

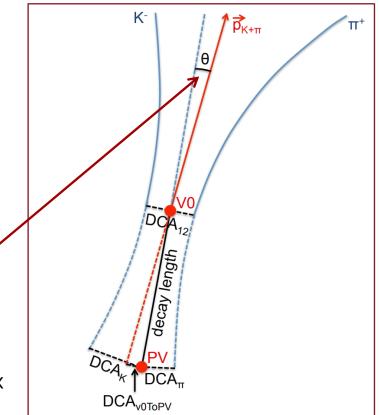
 $D^0 \rightarrow K^-\pi^+$ , branching ratio is (3.89 ± 0.04)%

Topological properties of D<sup>0</sup> decays used for their reconstruction:

- decay length of D meson candidate
  - ideally ~ 200 μm
- daughters DCA to primary vertex (PV)
  - ideally >> 0 μm
- DCA between daughter particles
  - ideally  $\rightarrow$  0  $\mu m$
- pointing angle θ between reconstructed D<sup>0</sup>
  momentum and decay length vector
  - ideally  $\rightarrow 0$
- reconstructed **D**<sup>0</sup> candidate **DCA** to primary vertex
  - ideally  $\rightarrow$  0  $\mu m$






Hadronic decay channel is used for reconstruction

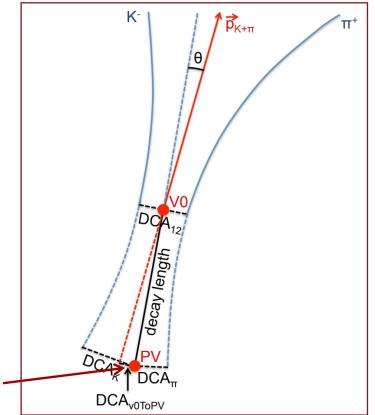
•  $D^0 \rightarrow K^-\pi^+$ , branching ratio is (3.89 ± 0.04)%

Topological properties of D<sup>0</sup> decays used for their reconstruction:

- decay length of D meson candidate
  - ideally ~ 200 μm
- **daughters DCA** to primary vertex (PV)
  - ideally >> 0 μm
- DCA between daughter particles
  - ideally  $\rightarrow$  0  $\mu m$
- pointing angle θ between reconstructed D<sup>0</sup>
  momentum and decay length vector
  - ideally  $\rightarrow 0$
- reconstructed **D**<sup>0</sup> candidate **DCA** to primary vertex
  - ideally  $\rightarrow$  0  $\mu m$



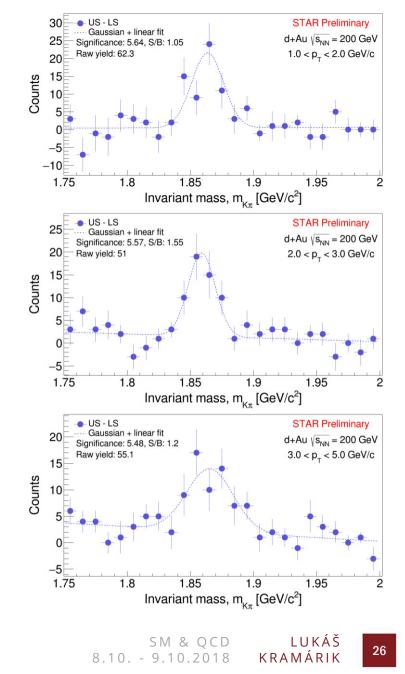



Hadronic decay channel is used for reconstruction

•  $D^0 \rightarrow K^-\pi^+$ , branching ratio is (3.89 ± 0.04)%

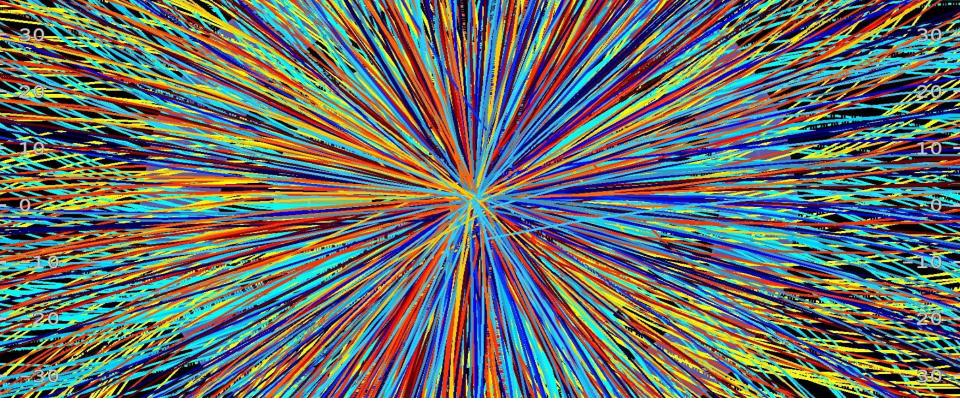
Topological properties of D<sup>0</sup> decays used for their reconstruction:

- decay length of D meson candidate
  - ideally ~ 200 μm
- daughters DCA to primary vertex (PV)
  - ideally >> 0 μm
- DCA between daughter particles
  - ideally  $\rightarrow$  0  $\mu m$
- pointing angle θ between reconstructed D<sup>0</sup> momentum and decay length vector
  - ideally  $\rightarrow 0$
- reconstructed **D**<sup>0</sup> candidate **DCA** to primary vertex
  - ideally  $\rightarrow$  0  $\mu m$






# D<sup>0</sup> raw yields in d+Au at STAR


#### • Rectangular Cuts method in TMVA is used:

- This mode randomly samples different cut combinations and selects the one with the largest background rejection for a given signal efficiency
- Background are wrong (like) sign combinations of daughter particles (K<sup>-</sup> $\pi^-$ , K<sup>+</sup> $\pi^+$ )
  - subtracted from the correct (unlike) sign combinations
- Intervals of pair  $p_{T}$  used for analysis:
  - 1–2, 2–3, 3–5 GeV/*c*
- Significance larger than 5 is achieved in all p<sub>T</sub> intervals



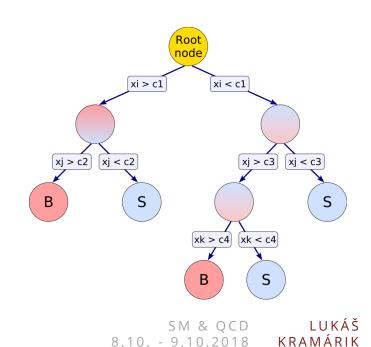
### **Conclusions and outlook**

- Small systems (pA, pp collisions) are currently **not only benchmarks** for heavy ion physicists
- Understanding of excited QCD needs to be further tested in pp and pA collisions
  - **multiplicity biases** can affect the comparison among systems
- D<sup>0</sup> mesons are **reconstructed via their hadronic decay channels** in d+Au collisions with excellent precision at the **STAR experiment**
- Evaluations of the efficiency correction on D<sup>o</sup> raw yield in d+Au collisions and systematic uncertainties are under way to determine:
  - nuclear modification factor R<sub>dAu</sub>
  - elliptic anisotropy v<sub>2</sub>

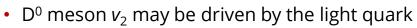


# Thank you for your attention



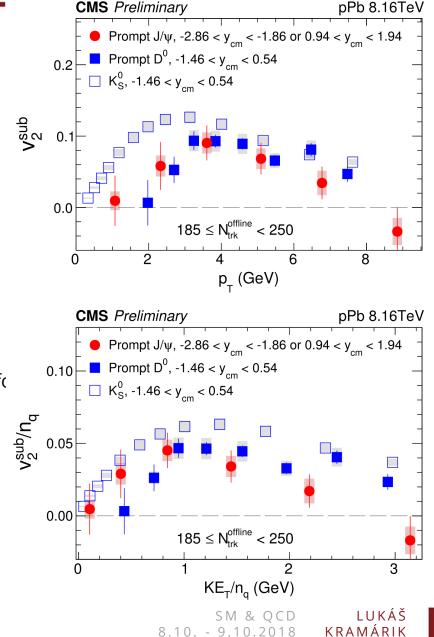

- Topological variables are optimized separately for different  $p_T$  intervals using **Toolkit** for Multivariate Data Analysis (TMVA) package in ROOT
- TMVA contains multiple methods to separated signal

#### • Rectangular Cuts:


- This mode randomly samples different cut combinations and selects the one with the largest background rejection for a given signal efficiency
- Set of cuts with the greatest significance is used for raw yield extraction

#### Boosted Decision Trees (BDT):

- Classifier is a set of decision tree
- Usually 850 trees are used with maximum depth 3
- Divide the phase space into multiple signal-like and background-like hypercubes




### ELLIPTIC FLOW V<sub>2</sub> IN P+PB AT CMS



- J/ $\Psi$  may disentagle this effect
- Comparison of elliptic flow ν<sub>2</sub> of D<sup>0</sup> meson and J/Ψ and light K<sup>0</sup><sub>S</sub> meson
- All displayed mesons have common v<sub>2</sub> shape
- For  $p_T > 4$  GeV/*c*, D<sup>0</sup>  $v_2$  seems to be higher than fc J/ $\Psi$

Hint of **weaker collective behavior** of heavy flavor quarks than light quarks.

