
FNAL Spack / SpackDev status: the MVP

Chris Green, FNAL, 3 Oct 2018

• MVP: Minimum Viable Product.
• “First look” for experimenters to try, vet overall direction, etc.
• Software stack for SL7 / GCC (C++17) only (optimized for profiling).
• Keep track of issues along the way but achieve the narrow goal first.
• “Pinnacle” of the software stack: the art suite.
• Everything built “our way” to maximize realism & compatibility for experiments.
• Use system-available packages where possible via packages.yaml.
• First demonstration of cetmodules.
• NOT “release”-oriented.
• NOT a solution to every problem.
• NOT a guarantee that every remaining problem can be solved.
• NOT a collection of every piece of software every experiment will need.

Description

HSF Packaging Meeting2

• Project wiki at https://cdcvs.fnal.gov/redmine/projects/spack-planning/wiki/Wiki.
• Instructions for MVP at https://cdcvs.fnal.gov/redmine/projects/spack-

planning/repository/raw/MVP/README.pdf.
• Released 2018-08-29.
• Procedure outline:
– Obtain and execute the bootstrap script.
– Source the generated setup script.
– Initialize a SpackDev area to develop (e.g.) the cetlib product from the art suite.
– Develop, build and test the checked-out products within the correct environment for each

package.
• Instructions include an heuristic for creating recipes for your own packages, and

one for creating your own dependency tree.
• Comments on everything welcome, including instructions, wiki, scripts, etc.

Detail

HSF Packaging Meeting3

https://cdcvs.fnal.gov/redmine/projects/spack-planning/wiki/Wiki
https://cdcvs.fnal.gov/redmine/projects/spack-planning/repository/raw/MVP/README.pdf

• <spack-tools>, an independent Spack installation containing the compiler and
one or two other tools such as git.

• spack/, containing the Spack application (FNAL-specific fork), its accompanying
code, all its package recipes, and some configuration.

• fnal-art/, containing recipes for the art suite, and into which you would place
your own recipes.

• <spack-data>, an area containing all the other products to be built.
• spackdev/, containing the SpackDev application and its accompanying code.
• spack_glue/MVP/, containing the bootstrap script, these instructions and more.
• setup.sh, a Bash setup script which, when sourced, will get your environment

ready to initialize a SpackDev area and start developing.
[<…>: configurable, may be located outside the MVP tree.]

Detail: anatomy of an MVP installation area

HSF Packaging Meeting4

https://github.com/FNALssi/spack
https://github.com/chissg/spackdev
https://cdcvs.fnal.gov/redmine/projects/spack-planning/repository/revisions/master/show/MVP

• build/, where the build takes place.
• install/, where products are installed.
• srcs/, all checked-out sources appear here. This also contains the generated
CMakeLists.txt file.

• spackdev-aux/, containing tool wrappers and environment information for each
package.

Detail: anatomy of a SpackDev development area

HSF Packaging Meeting5

• Front matter (project declaration, path variables, external project setup).
• One ExternalProject_Add() call per product to be developed, including:

– Generator specification.
– Full set of CMake arguments for project.
– Build command (to match generator choice and ensure nested make commands share

parallelism).
– Dependencies on other external projects.

Detail: anatomy of a SpackDev CMakeLists.txt

HSF Packaging Meeting6

• Global build (no tests):
spack load cmake
cmake --build build/

• Per-package development (--prompt is a Bash-only enhancement):
spackdev env --cd --prompt art
make …

Detail: using a SpackDev development area

HSF Packaging Meeting7

• Currently source-only, so make sure you have space (and time) for the initial build
of the external dependencies.

• Even without the dependency build, the initialization process is time-consuming
due to the need for multiple concretization steps for non-trivial dependency trees.

• Relies on the existence of a pre-calculated dependency tree (one is provided for
the art suite) including versions and variants appropriate for the particular release
being developed.

• Global multi-package builds are available with coordinated package-level
parallelism. Develop and test one package at a time using “spackdev env”.

• Support for Bash prompt labels to keep track of environment (contrib. for Zsh?).
• Support for IDEs via CMake’s secondary generator options (guinea pigs needed).

Observations

HSF Packaging Meeting8

https://cdcvs.fnal.gov/redmine/projects/spack-planning/repository/revisions/master/entry/MVP/templates/dag.txt

• Packages to be developed cannot be build-only dependencies of the other
packages (e.g. cetmodules).

• Packages to be developed must be CMake-based (cetmodules is not required) at
this time. spackdev init could conceivably handle other build systems if it were
straightforward to extract the necessary build instructions from the recipe for
insertion in CMakeLists.txt. Parallelism issues might be a concern, however.

Observations

HSF Packaging Meeting9

• Support the MVP and collect and incorporate feedback therefrom.
• Reformulate SpackDev as a Spack extension (facility available via PR #8612) to

reduce the number of required concretization steps to (hopefully) one.
• Expand the repertoire of Spack recipes to include those required for LArSoft.
• Investigate how to incorporate Spack Chains (feature originally from Jim Amundson

currently under development as a PR) and BuildCache into a coherent operational
system.

Next steps

HSF Packaging Meeting10

https://github.com/spack/spack/pull/8612
https://github.com/spack/spack/pull/8772

• Investigate and implement changes to Spack necessary to support:
– Multiple releases and compilers.
– Data-only packages.
– No-source (“umbrella”) packages.
– Development of product sets including build-only dependencies (e.g. cetmodules).
– Layered releases (already-installed packages from prior releases, or central installations of

the current release) in the face of evolved recipes (and likely different checksums for the
same package).

– Externally-based build system base classes such as (say) CetPackage.
• Develop release management tools.

Next steps

HSF Packaging Meeting11

