
Linear Algebra Refresher

Andreas Adelmann

1 Gauss’s Method

2 Elementary Definitions

3 General= Particular+Homogeneous

4 Length and angle measures

5 Vector Spaces Definition and Examples

6 Subspaces and spanning sets

7 Basis

CAS - 2018 1/123



8 Dimension

9 Vector Spaces and Linear Systems

10 Sums and Scalar Products

11 Matrix Multiplication

12 Inverses

13 Properties of Determinants

14 Determinants as size functions

15 Eigenvalues and Eigenvectors

16 Matrix Exponentials

17 The Symplectic Form of Hamilton’s EQM

18 If time permits: Similarity Definition and Examples

CAS - 2018 2/123



Notation

R, R+, Rn real numbers, positive reals, n-tuples of reals
N, C natural numbers {0, 1, 2, . . . }, complex numbers

(a .. b), [a .. b] open interval, closed interval
〈. . .〉 sequence (a list in which order matters)
hi,j row i and column j entry of matrix H

V,W,U vector spaces
~v, ~0, ~0V vector, zero vector, zero vector of a space V

Pn, Mn×m space of degree n polynomials, n×m matrices
[S] span of a set

〈B,D〉, ~β,~δ basis, basis vectors
En = 〈~e1, . . . , ~en〉 standard basis for Rn

h, g homomorphisms (linear maps)
t, s transformations (linear maps from a space to itself)

RepB(~v), RepB,D(h) representation of a vector, a map
Zn×m or Z, In×n or I zero matrix, identity matrix

|T | determinant of the matrix

The lectures based on the material and book by Prof. Jim Hefferon.
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Gauss’s Method
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Linear systems

1.1 Definition A linear equation in the variables x1, . . . , xn has the form
a1x1 + a2x2 + a3x3 + · · ·+ anxn = d where d ∈ R is the constant .

An n-tuple (s1, s2, . . . , sn) ∈ Rn is a solution of, or satisfies , that
equation if substituting the numbers s1, . . . , sn for the variables gives a
true statement: a1s1 + a2s2 + · · ·+ ansn = d. A system of linear equations

a1,1x1 + a1,2x2 + · · · + a1,nxn = d1
a2,1x1 + a2,2x2 + · · · + a2,nxn = d2

...
am,1x1 + am,2x2 + · · · + am,nxn = dm

has the solution (s1, s2, . . . , sn) if that n-tuple is a solution of all of the
equations.
Example There are three linear equations in this linear system.

(1/4)x + y − z = 0

x + 4y + 2z = 12

2x − 3y − z = 3

CAS - 2018 5/123



Solving a linear system

Example To find the solution of this system

(1/4)x + y − z = 0

x + 4y + 2z = 12

2x − 3y − z = 3

we transform it to one whose solution is easy.

Start by clearing the fraction.

4ρ1−→
x + 4y − 4z = 0

x + 4y + 2z = 12

2x − 3y − z = 3

Next use the first row to act on the rows below, eliminating their x terms.

−ρ1+ρ2−→
−2ρ1+ρ3

x + 4y − 4z = 0

+ 6z = 12

−11y + 7z = 3
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Then swap to bring a y term to the second row.

ρ2↔ρ3−→
x + 4y − 4z = 0

−11y + 7z = 3

6z = 12

Now solve the bottom row: z = 2. With that, the shape of the
transformed system lets us solve for y by substituting into the second row:
−11y + 7(2) = 3 shows y = 1. The shape also lets us solve for x by
substituting into the first row: x+ 4(1) − 4(2) = 0, so that x = 4.

1.7 Definition
A matrix that has undergone Gaussian elimination is said to be in row

echelon form or, more properly, "reduced echelon form" or "row-reduced
echelon form." Such a matrix has the following characteristics:
1) All zero rows are at the bottom of the matrix
2) The leading entry of each nonzero row after the first occurs to the

right of the leading entry of the previous row.
3) The leading entry in any nonzero row is 1.
4) All entries in the column above and below a leading 1 are zero.

Another common definition of echelon form only requires zeros below the
leading ones, while the above definition also requires them above the
leading ones.
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Example

2x − 3y − z + 2w = −2

x + 3z + 1w = 6

2x − 3y − z + 3w = −3

y + z − 2w = 4

(−1/2)ρ1+ρ2−→
−ρ1+ρ3

2x − 3y − z + 2w = −2

(3/2)y + (7/2)z = 7

w = −1

y + z − 2w = 4

(−2/3)ρ2+ρ4−→

2x − 3y − z + 2w = −2

(3/2)y + (7/2)z = 7

w = −1

− (4/3)z − 2w = −2/3

ρ3↔ρ4−→

2x − 3y − z + 2w = −2

(3/2)y + (7/2)z = 7

− (4/3)z − 2w = −2/3

w = −1

The fourth equation says w = −1. Substituting back into the third
equation gives z = 2. Then back substitution into the second and first rows
gives y = 0 and x = 1. The unique solution is (1, 0, 2,−1).
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Gauss’s Method

1.3 Theorem If a linear system is changed to another by one of these
operations
1) an equation is swapped with another
2) an equation has both sides multiplied by a nonzero constant
3) an equation is replaced by the sum of itself and a multiple of another

then the two systems have the same set of solutions.
1.4 Definition The three operations from Theorem 1.3 are the elementary

reduction operations , or row operations , or Gaussian operations .
They are swapping , multiplying by a scalar (or rescaling), and row
combination .
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Systems without a unique solution

Example This system has no solution.

x + y + z = 6

x + 2y + z = 8

2x + 3y + 2z = 13

On the left the sum of the first two rows equals the third row, while on the
right that is not so. So there is no triple of reals that makes all three
equations true.

Gauss’ Method makes the inconsistency clear.

−ρ1+ρ2−→
−2ρ1+ρ3

x + y + z = 6

y = 2

y = 1

−ρ2+ρ3−→
x + y + z = 6

y = 2

0 = −1
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Example This system has infinitely many solutions.

−x − y + 3z = 3

x + z = 3

3x − y + 7z = 15

ρ1+ρ2−→
3ρ1+ρ3

−x − y + 3z = 3

−y + 4z = 6

−4y + 16z = 24

−4ρ2+ρ3−→
−x − y + 3z = 3

−y + 4z = 6

0 = 0

Taking z = 0 gives (3,−6, 0) while taking z = 1 gives (2,−2, 1).

Example It is not the ‘0 = 0’ that counts. This also has infinitely many
solutions.

x − y + z = 4

x + y − 2z = −1

−ρ1+ρ2−→ x − y + z = 4

2y − 3z = −5

Taking z = 0 gives the solution (3/2,−5/2, 0). Taking z = −1 gives
(1,−4,−1).
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Elementary Definitions
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Matrices and vectors

2.2 Definition An m×n matrix is a rectangular array of numbers with
m rows and n columns . Each number in the matrix is an entry .
Example This is a 2×3 matrix

B =

(
1 −2 3

4 −5 6

)

because it has 2 rows and 3 columns. The entry in row 2 and column 1 is
b2,1 = 4.

2.4 Definition A column vector , often just called a vector , is a matrix with
a single column. A matrix with a single row is a row vector . The entries of
a vector are sometimes called components . A column or row vector whose
components are all zeros is a zero vector .

We denote vectors with an over-arrow
Example This column vector has three components.

~v =




−1

−0.5

0



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Example This row vector has three components

~w = (−1 −0.5 0)

Example This is the two-component zero vector.

~0 =

(
0

0

)
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Vector operations

2.6 Definition The vector sum of ~u and ~v is the vector of the sums.

~u+~v =




u1
...
un


+




v1
...
vn


 =




u1 + v1
...

un + vn




2.7 Definition The scalar multiplication of the real number r and the vector
~v is the vector of the multiples.

r ·~v = r ·




v1
...
vn


 =




rv1
...
rvn




Example

3

(
1

2

)
− 2

(
0

1

)
=

(
3

4

)
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General = Particular+ Homogeneous
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Form of solution sets

Example This system
x + 2y − z = 2

2x − y − 2z +w = 5

has solutions of this form.



x

y

z

w


 =




12/5

−1/5

0

0


+




1

0

1

0


 z+




−2/5

1/5

0

1


w z,w ∈ R

Taking z = w = 0 shows that the first vector is a particular solution of the
system.
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3.2 Definition A linear equation is homogeneous if it has a constant of zero,
so that it can be written as a1x1 + a2x2 + · · · + anxn = 0.
Example From the prior system

x + 2y − z = 2

2x − y − 2z +w = 5

we get this associated system of homogeneous equations.

x + 2y − z = 0

2x − y − 2z +w = 0

The same Gauss’s Method steps reduce it to echelon form.
(
1 2 −1 0 0

2 −1 −2 1 0

)
−2ρ1+ρ2−→

(
1 2 −1 0 0

0 −5 0 1 0

)

The vector description of the solution set is like the earlier one but the zero
vector is a particular solution.

{




1

0

1

0


 z+




−2/5

1/5

0

1


w | z,w ∈ R }

CAS - 2018 28/123



3.1 Theorem Any linear system’s solution set has the form

{~p+ c1~β1 + · · · + ck~βk | c1, . . . , ck ∈ R }

where ~p is any particular solution and where the number of vectors ~β1, . . . ,
~βk equals the number of free variables that the system has after a Gaussian
reduction.

3.3 Corollary Solution sets of linear systems are either empty, have one
element, or have infinitely many elements.
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Summary: Kinds of Solution Sets

number of solutions of the
homogeneous system

particular
solution
exists?

one infinitely many

yes unique
solution

infinitely many
solutions

no no
solutions

no
solutions

An important special case is when there are the same number of
equations as unknowns.

3.4 Definition A square matrix is nonsingular if it is the matrix of
coefficients of a homogeneous system with a unique solution. It is singular
otherwise, that is, if it is the matrix of coefficients of a homogeneous system
with infinitely many solutions.
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Geometric Interpretation

We can draw two-unknown equations as lines. Then the three
possibilities for solution sets become clear.

Unique solution

3x+ 2y= 7

x− y=−1

No solutions

3x+ 2y= 7

3x+ 2y= 4

Infinitely many
solutions

3x+ 2y= 7

6x+ 4y= 14

This is a nice restatement of the possibilities; the geometry gives us insight
into what can happen with linear systems.
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Length and angle measures
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Length

?? Definition The length of a vector ~v ∈ Rn is the square root of the sum of
the squares of its components.

|~v | =
√
v21 + · · ·+ v2n

Example The length of 

−1

−2

−3




is
√
1+ 4+ 9 =

√
14.

For any nonzero vector ~v, the length one vector with the same direction
is ~v/|~v|. We say that this normalizes ~v to unit length.
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Dot product

?? Definition The dot product (or inner product or scalar product) of two
n-component real vectors is the linear combination of their components.

~u •~v = u1v1 + u2v2 + · · ·+ unvn

Example The dot product of two vectors


1

1

−1


 •



3

−3

4


 = 3− 3− 4 = −4

is a scalar, not a vector.
The dot product of a vector with itself ~v •~v = v21 + · · ·+ v2n is the square

of the vector’s length.
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Triangle Inequality

?? Theorem For any ~u,~v ∈ Rn,

|~u+~v | 6 |~u |+ |~v |

with equality if and only if one of the vectors is a nonnegative scalar
multiple of the other one.

This is the source of the familiar saying, “The shortest distance between
two points is in a straight line.”

~u

~v~u+~v

start

finish
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Cauchy-Schwarz Inequality

?? Corollary For any ~u,~v ∈ Rn,

| ~u •~v | 6 | ~u | |~v |

with equality if and only if one vector is a scalar multiple of the other.
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Angle measure

Definition The angle between two vectors ~u,~v ∈ Rn is this.

θ = arccos(
~u •~v

|~u | |~v |
)

We motivate that definition with two vectors in R3.

~v
~u

If neither is a multiple of the other then they determine a plane, because if
we put them in canonical position then the origin and the endpoints make
three noncolinear points. Consider the triangle formed by ~u, ~v, and ~u−~v.
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Apply the Law of Cosines: |~u −~v |2 = |~u |2 + |~v |2 − 2 |~u | |~v | cos θ where θ is
the angle that we want to find. The left side gives

(u1 − v1)
2 + (u2 − v2)

2 + (u3 − v3)
2

= (u21 − 2u1v1 + v
2
1) + (u22 − 2u2v2 + v

2
2) + (u23 − 2u3v3 + v

2
3)

while the right side gives this.

(u21 + u
2
2 + u

2
3) + (v21 + v

2
2 + v

2
3) − 2 |~u | |~v | cos θ

Canceling squares u21 . . . , v23 and dividing by 2 gives the formula.
?? Corollary Vectors from Rn are orthogonal, that is, perpendicular, if and

only if their dot product is zero. They are parallel if and only if their dot
product equals the product of their lengths.
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Vector Spaces Definition and Examples
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Vector space

?? Definition A vector space (over R) consists of a set V along with
two operations ‘+’ and ‘·’ subject to the conditions that for all vectors
~v, ~w, ~u ∈ V, and all scalars r, s ∈ R:
1) the set V is closed under vector addition, that is, ~v+ ~w ∈ V
2) vector addition is commutative ~v+ ~w = ~w+~v

3) vector addition is associative (~v+ ~w) + ~u = ~v+ (~w+ ~u)

4) there is a zero vector ~0 ∈ V such that ~v+~0 = ~v for all ~v ∈ V
5) each ~v ∈ V has an additive inverse ~w ∈ V such that ~w+~v = ~0

6) the set V is closed under scalar multiplication, that is, r ·~v ∈ V
7) addition of scalars distributes over scalar multiplication

(r+ s) ·~v = r ·~v+ s ·~v
8) scalar multiplication distributes over vector addition
r · (~v+ ~w) = r ·~v+ r · ~w

9) ordinary multipication of scalars associates with scalar multiplication
(rs) ·~v = r · (s ·~v)

10) multiplication by the scalar 1 is the identity operation 1 ·~v = ~v.
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Example Let V be the line with slope 2 that passes through the origin in
the plane.

(
1

2

)
V = {

(
x

y

)
∈ R2 | y = 2x }

It is a set consisting of vectors. Here are some of its infinitely many
elements. (

4

8

) (
1/2

1

) (
−100

−200

) (
0

0

)

We will show that this set is a vector space, where the operations are the
usual vector addition and scalar multiplication.

Verify conditions (1)-(10) above and arrive at the conclusion: V is
a vector space, under the natural addition and scalar multiplication
operations.
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Rn

The set of n-tall vectors is a vector space under the natural operations.
All ten conditions are easy; we will just verify condition (1). Where

~v =




v1
...
vn


 ~w =




w1
...
wn




then the sum

~v+ ~w =




v1 +w1
...

vn +wn




is also a member of Rn. (There are no restrictions to check, since every
n-tall vector is a member of Rn.)
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Example Consider the set of quadratic polynomials.

P2 = {a0 + a1x+ a2x
2 | a0, a1, a2 ∈ R }

Some members are 3+ 2x+ 1x2, 10+ 0x+ 5x2, and 0+ 0x+ 0x2.

This is a
vector space under the usual operations of polynomial addition

(a0 + a1x+ a2x
2) + (b0 + b1x+ b2x

2) = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2

and scalar multiplication.

r · (a0 + a1x+ a2x2) = (ra0) + (ra1)x+ (ra2)x
2

Remember the intuition that a vector space is a place where linear
combinations can happen. Here is a sample combination in P2

4 · (1+ 2x+ 3x2) − (1/5) · (10+ 5x2) = 2+ 8x+ 11x2

illustrating that a linear combination of quadratic polynomials is a
quadratic polynomial.
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Subspaces and spanning sets
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Example This is not a subspace of R3.

T = {



x

y

z


 | x+ y+ z = 1 }

It is a subset of R3 but it is not a vector space. One condition that it
violates is that it is not closed under vector addition: here are two elements
of T that sum to a vector that is not an element of T .



1

0

0


+



0

1

0


 =



1

1

0




(Another reason that it is not a vector space is that it does not satisfy
condition (6). Still another is that it does not contain the zero vector.)
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Span

?? Definition The span (or linear closure) of a nonempty subset S of a
vector space is the set of all linear combinations of vectors from S.

[S] = {c1~s1 + · · ·+ cn~sn | c1, . . . , cn ∈ R and ~s1, . . . ,~sn ∈ S}

The span of the empty subset of a vector space is its trivial subspace.

No notation for the span is completely standard. The square brackets used
here are common but so are ‘span(S)’ and ‘sp(S)’.

Example Inside the vector space of all two-wide row vectors, the span of
this one-element set

S = {(1 2) }

is this.
[S] = {(a 2a) | a ∈ R } = {(1 2)a | a ∈ R }
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Basis
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Definition of basis

?? Definition A basis for a vector space is a sequence of vectors that is
linearly independent and that spans the space.

Because a basis is a sequence, meaning that bases are different if they
contain the same elements but in different orders, we denote it with angle
brackets 〈~β1, ~β2, . . .〉.

Example This is a basis for R2.

〈
(
1

−1

)
,

(
1

1

)
〉

It is linearly independent.

c1

(
1

−1

)
+ c2

(
1

1

)
=

(
0

0

)
=⇒ c1 + c2 = 0

−c1 + c2 = 0
=⇒ c1 = 0, c2 = 0

And it spans R2 since

c1

(
1

−1

)
+ c2

(
1

1

)
=

(
x

y

)
=⇒ c1 + c2 = x

−c1 + c2 = y

has the solution c1 = (1/2)x− (1/2)y and c2 = (1/2)x+ (1/2)y.
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Definition of basis
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Example This is a basis for M2×2.

〈
(
1 0

0 0

)
,

(
0 2

0 0

)
,

(
0 0

3 0

)
,

(
0 0

0 4

)
〉

This is another one.

〈
(
1 0

0 0

)
,

(
1 2

0 0

)
,

(
1 2

3 0

)
,

(
1 2

3 4

)
〉

Example This is a basis for R3.

E3 = 〈



1

0

0


 ,



0

1

0


 ,



0

0

1


〉

?? Definition For any Rn

En = 〈




1

0
...
0



,




0

1
...
0



, . . . ,




0

0
...
1



〉

is the standard (or natural) basis. We denote these vectors ~e1, . . . ,~en.
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?? Definition In a vector space with basis B the representation of ~v with
respect to B is the column vector of the coefficients used to express ~v as a
linear combination of the basis vectors:

RepB(~v) =




c1
c2
...
cn




where B = 〈~β1, . . . , ~βn〉 and ~v = c1~β1 + c2~β2 + · · ·+ cn~βn. The c’s are the
coordinates of ~v with respect to B.
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Example Above we saw that in P1 = {a+ bx | a, b ∈ R } one basis is
B = 〈1 + x, 1 − x〉. As part of that we computed the coefficients needed to
express a member of P1 as a combination of basis vectors.

a+ bx = c1(1+ x) + c2(1− x) =⇒ c1 = (a+ b)/2, c2 = (a− b)/2

For instance, the polynomial 3+ 4x has this expression

3+ 4x = (7/2) · (1+ x) + (−1/2) · (1− x)

so its representation is this.

RepB(3+ 4x) =
(
7/2

−1/2

)
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Example With respect to R3’s standard basis E3 the vector

~v =



2

−3

1/2




has this representation.

RepE3
(~v) =



2

−3

1/2




In general, any ~w ∈ Rn has RepEn
(~w) = ~w.
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Dimension
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Definition of dimension

?? Definition A vector space is finite-dimensional if it has a basis with
only finitely many vectors.
Example The space R3 is finite-dimensional since it has a basis with three
elements E3.
Example The space of quadratic polynomials P2 has at least one basis with
finitely many elements, 〈1, x, x2〉, so it is finite-dimensional.
Example The space M2×2 of 2×2 matrices is finite-dimensional. Here is one
basis with finitely many members.

〈
(
1 0

0 0

)
,

(
1 1

0 0

)
,

(
1 1

1 0

)
,

(
1 1

1 1

)
〉

Note From this point on we will restrict our attention to vector spaces that
are finite-dimensional. All the later examples and definitions assume this of
the spaces.
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We will show that for any finite-dimensional space, all of its bases have
the same number of elements.
Example Each of these is a basis for P2.

B0 = 〈1, 1+ x, 1+ x+ x2〉
B1 = 〈1+ x+ x2, 1+ x, 1〉
B2 = 〈x2, 1+ x, 1− x〉
B3 = 〈1, x, x2〉

Each has three elements.
Example Here are two different bases for M2×2.

B0 = 〈
(
1 0

0 0

)
,

(
1 1

0 0

)
,

(
1 1

1 0

)
,

(
1 1

1 1

)
〉

B1 = 〈
(
0 0

0 1

)
,

(
0 0

1 0

)
,

(
0 1

0 0

)
,

(
1 0

0 0

)
〉

Both have four elements.
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Vector Spaces and Linear Systems
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Rowspace

Example The matrix before Gauss’s Method and the matrix after have
equal row spaces.

M =



1 2 1 0 3

−1 −2 2 2 0

2 4 5 2 9


 ρ1+ρ2−→

−2ρ1+ρ3

−ρ2+ρ3−→



1 2 1 0 3

0 0 3 2 3

0 0 0 0 0




The nonzero rows of the latter matrix form a basis for Rowspace(M).

B = 〈(1 2 1 0 3), (0 0 3 2 3)〉

The row rank is 2.
So Gauss’s Method produces a basis for the row space of a matrix. It has

found the “repeat” information, that M’s third row is three times the first
plus the second, and eliminated that extra row.
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Transpose I

?? Definition The transpose of a matrix is the result of interchanging its
rows and columns, so that column j of the matrix A is row j of AT and vice
versa.
Example To find a basis for the column space of a matrix,

(
2 3

−1 1/2

)

transpose, (
2 3

−1 1/2

)T

=

(
2 −1

3 1/2

)

reduce, (
2 −1

3 1/2

)
(−3/2)ρ1+ρ2−→

(
2 −1

0 2

)

and transpose back. (
2 −1

0 2

)T

=

(
2 0

−1 2

)
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Transpose II

This basis

B = 〈
(
2

−1

)
,

(
0

2

)
〉

shows that the column space is the entire vector space R2.
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Rank

?? Definition The rank of a matrix is its row rank or column rank.
Example The column rank of this matrix




2 −1 3 1 0 1

3 0 1 1 4 −1

4 −2 6 2 0 2

1 0 3 0 0 2




is 3. Its largest set of linearly independent columns is size 3 because that’s
the size of its largest set of linearly independent rows.

−(3/2)ρ1+ρ2−→
−2ρ1+ρ3
−(1/2)ρ1+ρ4

−(1/3)ρ2+ρ4−→ ρ3↔ρ4−→




2 −1 3 1 0 1

0 3/2 −7/2 −1/2 4 −5/2

0 0 8/3 −1/3 −4/3 7/3

0 0 0 0 0 0



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?? Theorem For linear systems with n unknowns and with matrix of
coefficients A, the statements
(1) the rank of A is r
(2) the vector space of solutions of the associated homogeneous system

has dimension n− r

are equivalent.
Proof The rank of A is r if and only if Gaussian reduction on A ends
with r nonzero rows. That’s true if and only if echelon form matrices row
equivalent to A have r-many leading variables. That in turn holds if and
only if there are n− r free variables. QED
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Sums and Scalar Products
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Definition of matrix sum and scalar multiple

?? Definition The scalar multiple of a matrix is the result of entry-by-entry
scalar multiplication. The sum of two same-sized matrices is their
entry-by-entry sum.
Example Where

A =

(
1 −1

2 3

)
B =

(
0 0 2

9 −1/2 5

)
C =

(
1 0

8 −1

)

Then

A+ C =

(
2 −1

10 2

)
5B =

(
0 0 10

45 −5/2 25

)

Note that none of these is defined: A+ B, B+A, B+ C, C+ B.
From the definition, they are not defined because the sizes don’t match

and so the entry-by-entry sum is not possible. But really they are not
defined because the underlying function operations are not possible.
The fact that A has two columns means that functions represented
by A have two-dimensional domains. Functions represented by B have
three-dimensional domains. Adding the two functions would be adding
apples and oranges.
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Matrix Multiplication
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Example Consider two linear functions h : V →W and g : W → X

represented as here.

RepB,C(h) =



3 1

2 5

4 6


 RepC,D(g) =

(
8 7 11

9 10 12

)

We will do an explatory computation, to see how these two representations
combine to give the representation of the composition g ◦ h : V → X.

We start with the action of h on ~v ∈ V.

RepC(h(~v)) = RepB,C(h) ·RepB(~v)

=



3 1

2 5

4 6



(
v1
v2

)
=



3v1 + v2
2v1 + 5v2
4v1 + 6v2



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Next, to that apply g.

RepC,D(g) ·RepC(h(~v)) =
(
8 7 11

9 10 12

)

3v1 + v2
2v1 + 5v2
4v1 + 6v2




=

(
8(3v1 + v2) + 7(2v1 + 5v2) + 11(4v1 + 6v2)

9(3v1 + v2) + 10(2v1 + 5v2) + 12(4v1 + 6v2)

)

Gather terms.

=

(
(8 · 3+ 7 · 2+ 11 · 4)v1 + (8 · 1+ 7 · 5+ 11 · 6)v2
(9 · 3+ 10 · 2+ 12 · 4)v1 + (9 · 1+ 10 · 5+ 12 · 6)v2

)

Rewrite as a matrix-vector multiplication.

=

(
8 · 3+ 7 · 2+ 11 · 4 8 · 1+ 7 · 5+ 11 · 6
9 · 3+ 10 · 2+ 12 · 4 9 · 1+ 10 · 5+ 12 · 6

)(
v1
v2

)

So here is how the two starting matrices combine.

(
8 7 11

9 10 12

)

3 1

2 5

4 6


 =

(
8 · 3+ 7 · 2+ 11 · 4 8 · 1+ 7 · 5+ 11 · 6
9 · 3+ 10 · 2+ 12 · 4 9 · 1+ 10 · 5+ 12 · 6

)
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Definition of matrix multiplication

?? Definition The matrix-multiplicative product of the m×r matrix G and
the r×n matrix H is the m×n matrix P, where

pi,j = gi,1h1,j + gi,2h2,j + · · ·+ gi,rhr,j

so that the i, j-th entry of the product is the dot product of the i-th row of
the first matrix with the j-th column of the second.

GH =




...
gi,1 gi,2 · · · gi,r

...







h1,j
· · · h2,j · · ·

...
hr,j




=




...
· · · pi,j · · ·

...




Example
(
3 1 6

2 5 9

)

2 0 4

1 −3 5

4 2 7


 =

(
31 9 59

45 3 96

)
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Example This product


1 3 −1

0 0 0

2 0 0



(
5 7 1

2 2 0

)

is not defined because the number of columns on the left must equal the
number of rows on the right.

Example Square matrices of the same size have a defined product.


1 3 −1

0 0 0

2 0 0





5 7 1

2 2 0

1 −1 2


 =



10 14 −1

0 0 0

10 14 2




This reflects the fact that we can compose two functions from a space to
itself g, h : V → V.
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Order, dimensions, and sizes

An important observation about the order in which we write these
things: in writing the composition g ◦ h, the function g is written first, that
is, leftmost, but it is applied second.

~v
h7−→ h(~v)

g7−→ g(h(~v))

That order carries over to matrices: g ◦ h is represented by GH.
Also consider the dimensions of the spaces.

dimension n space h−→ dimension r space g−→ dimension m space

Briefly, m×r times r×n equals m×n, as here.

2×3 3×4 = 2×4
(
2 1 4

−1 0 3

)

3 0 2 1

5 0 0 2

1 −1 4 7


 =

(
15 −4 20 32

0 −3 10 20

)
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Matrix multiplication is not commutative

Function composition is in general not a commutative operation—
cos(
√
x) is different than

√
cos(x). This holds even in the special case of

composition of linear functions.

Example Changing the order in which we multiply these matrices
(
3 3

0 4

)(
−2 6

6 5

)
=

(
12 33

24 20

)

changes the result.
(
−2 6

6 5

)(
3 3

0 4

)
=

(
−6 18

18 38

)

Example The product of these two is defined in one order and not defined
in the other. (

3 4

0 2

) (
8 12 0

−4 0 1/2

)
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Inverses
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Definition of matrix inverse

?? Definition A matrix G is a left inverse matrix of the matrix H if GH is
the identity matrix. It is a right inverse if HG is the identity. A matrix H
with a two-sided inverse is an invertible matrix . That two-sided inverse is
denoted H−1.

Example This matrix

H =

(
2 5

1 3

)

has a two-sided inverse.

H−1 =

(
3 −5

−1 2

)

To check that, we multiply them in both orders. Here is one; the other is
just as easy. (

2 5

1 3

)(
3 −5

−1 2

)
=

(
1 0

0 1

)

CAS - 2018 80/123



Definition of matrix inverse

?? Definition A matrix G is a left inverse matrix of the matrix H if GH is
the identity matrix. It is a right inverse if HG is the identity. A matrix H
with a two-sided inverse is an invertible matrix . That two-sided inverse is
denoted H−1.
Example This matrix

H =

(
2 5

1 3

)

has a two-sided inverse.

H−1 =

(
3 −5

−1 2

)

To check that, we multiply them in both orders. Here is one; the other is
just as easy. (

2 5

1 3

)(
3 −5

−1 2

)
=

(
1 0

0 1

)
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Example One advantage of knowing a matrix inverse is that it makes
solving a linear system easy and quick. To solve

2x + 5y = −3

x + 3y = 10

rewrite as a matrix equation
(
2 5

1 3

)(
x

y

)
=

(
−3

10

)

and multiply both sides (from the left) by the matrix inverse.
(
3 −5

−1 2

)
·
(
2 5

1 3

)(
x

y

)
=

(
3 −5

−1 2

)
·
(
−3

10

)

(
1 0

0 1

)(
x

y

)
=

(
−59

23

)

(
x

y

)
=

(
−59

23

)
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This specializes the arrow diagram for composition to the case of
inverses.

Vwrt B

Wwrt C

Vwrt B

h
H

h−1

H−1

id
I

?? Lemma If a matrix has both a left inverse and a right inverse then the
two are equal.

?? Theorem A matrix is invertible if and only if it is nonsingular.
Proof (For both results.) Given a matrix H, fix spaces of appropriate
dimension for the domain and codomain and fix bases for these spaces.
With respect to these bases, H represents a map h. The statements are true
about the map and therefore they are true about the matrix. QED
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Finding the inverse of a matrix A is a lot of work but as we noted
earlier, once we have it then solving linear systems A~x = ~b is easy.
Example The linear system

x + 3y + z = 2

2x − z = 12

x + 2y = 4

is this matrix equation.


1 3 1

2 0 −1

1 2 0





x

y

z


 =



2

12

4




Solve it by multiplying both sides from the left by the inverse that we
found earlier.



x

y

z


 =



2/3 2/3 −1

−1/3 −1/3 1

4/3 1/3 −2





2

12

4


 =



16/3

−2/3

−4/3



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We sometimes want to repeatedly solve systems with the same left side
but different right sides. This system equals the one on the prior slide but
for one number on the right.

x + 3y + z = 1

2x − z = 12

x + 2y = 4

The solution is this.


x

y

z


 =



2/3 2/3 −1

−1/3 −1/3 1

4/3 1/3 −2





1

12

4


 =



14/3

−1/3

−8/3



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The inverse of a 2×2 matrix

?? Corollary The inverse for a 2×2 matrix exists and equals

(
a b

c d

)−1

=
1

ad− bc

(
d −b

−c a

)

if and only if ad− bc 6= 0.
Example (

2 4

−1 1

)−1

=
1

6

(
1 −4

1 2

)
=

(
1/6 −2/3

1/6 1/3

)
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Properties of Determinants

CAS - 2018 87/123



Nonsingular matrices

For any matrix, whether or not it is nonsingular is a key question. Recall
that an n×n matrix T is nonsingular if and only if each of these holds:

any system T~x = ~b has a solution and that solution is unique;

Gauss-Jordan reduction of T yields an identity matrix;

the rows of T form a linearly independent set;

the columns of T form a linearly independent set, a basis for Rn;
(any map that T represents is an isomorphism;)

an inverse matrix T−1 exists.

This chapter develops a formula to determine whether a matrix is
nonsingular.
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Determining nonsingularity is trivial for 1×1 matrices.
(
a
)

is nonsingular iff a 6= 0

For the 2×2 formula.
(
a b

c d

)
is nonsingular iff ad− bc 6= 0

Formula for the 3×3 case


a b c

d e f

g h i


 is nonsingular iff aei+ bfg+ cdh− hfa− idb− gec 6= 0

With these cases in mind, we posit a family of formulas: a, ad − bc, etc.
For each n the formula defines a determinant function detn×n : Mn×n → R
such that an n×n matrix T is nonsingular if and only if detn×n(T) 6= 0.
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Warning

The formula for the determinant of a 2×2 matrix has something to do
with multiplying diagonals.

∣∣∣∣
a b

c d

∣∣∣∣ = ad− bc

Sometimes people have learned a mnemonic for the 3×3 formula that has
to do with multplying diagonals.
∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣
= aei+ bfg+ cdh−gec− hfa− idb



a b c a b

d e f d e

g h i g h




Don’t try to extend to 4×4 or larger sizes; there is no general pattern here.
Instead, for larger matrices use Gauss’s Method.
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Determinants as size functions
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Box

This parallelogram is defined by the two vectors.

(
x1
y1

)
(
x2
y2

)

?? Definition In Rn the box (or parallelepiped) formed by 〈~v1, . . . ,~vn〉 is
the set {t1~v1 + · · ·+ tn~vn | t1, . . . , tn ∈ [0 . . . 1] }.
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Area

y1

y2

x2 x1

A
B

C

D

E
F

box area = rectangle area− area of A− · · ·− area of F

= (x1 + x2)(y1 + y2) − x2y1 − x1y1/2

− x2y2/2− x2y2/2− x1y1/2− x2y1

= x1y2 − x2y1

The determinant of this matrix gives the size of the box formed by the
matrix’s columns. ∣∣∣∣

x1 x2
y1 y2

∣∣∣∣ = x1y2 − x2y1
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Determinants are multiplicative

?? Theorem A transformation t : Rn → Rn changes the size of all boxes by
the same factor, namely, the size of the image of a box |t(S)| is |T | times the
size of the box |S|, where T is the matrix representing t with respect to the
standard basis.

That is, the determinant of a product is the product of the determinants
|TS| = |T | · |S|.
Example The transformation tθ : R2 → R2 that rotates all vectors through
a counterclockwise angle θ is represented by this matrix.

Tθ = RepE2,E2
(tθ) =

(
cos θ − sin θ
sin θ cosθ

)

Observe that tθ doesn’t change the size of any boxes, it just rotates the
entire box as a rigid whole. Note that |Tθ| = 1.
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Determinant of the inverse

?? Corollary If a matrix is invertible then the determinant of its inverse is
the inverse of its determinant |T−1| = 1/|T |.
Proof 1 = |I| = |TT−1| = |T | · |T−1| QED

Example These matrices are inverse.
∣∣∣∣
1 2

3 4

∣∣∣∣ = −2

∣∣∣∣
−2 1

3/2 −1/2

∣∣∣∣ = −1/2
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Eigenvalues and Eigenvectors
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Eigenvalues and eigenvectors

?? Definition A transformation t : V → V has a scalar eigenvalue λ if there
is a nonzero eigenvector ~ζ ∈ V such that t(~ζ) = λ · ~ζ.

?? Definition A square matrix T has a scalar eigenvalue λ associated with
the nonzero eigenvector ~ζ if T~ζ = λ · ~ζ.
Example The matrix

D =

(
4 0

0 2

)

has an eigenvalue λ1 = 4 and a second eigenvalue λ2 = 2. The first is true
because an associated eigenvector is ~e1

(
4 0

0 2

)(
1

0

)
= 4 ·

(
1

0

)

and similarly for the second an associated eigenvector is e2.
(
4 0

0 2

)(
0

1

)
= 2 ·

(
0

1

)
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Eigenvalues and eigenvectors

?? Definition A transformation t : V → V has a scalar eigenvalue λ if there
is a nonzero eigenvector ~ζ ∈ V such that t(~ζ) = λ · ~ζ.

?? Definition A square matrix T has a scalar eigenvalue λ associated with
the nonzero eigenvector ~ζ if T~ζ = λ · ~ζ.
Example The matrix

D =

(
4 0

0 2

)

has an eigenvalue λ1 = 4 and a second eigenvalue λ2 = 2. The first is true
because an associated eigenvector is ~e1

(
4 0

0 2

)(
1

0

)
= 4 ·

(
1

0

)

and similarly for the second an associated eigenvector is e2.
(
4 0

0 2

)(
0

1

)
= 2 ·

(
0

1

)
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Computing eigenvalues and eigenvectors

Example We will find the eigenvalues and associated eigenvectors of this
matrix.

T =



0 5 7

−2 7 7

−1 1 4




We want to find scalars x such that T~ζ = x~ζ for some nonzero ~ζ. Bring the
terms to the left side.



0 5 7

−2 7 7

−1 1 4





z1
z2
z3


− x



z1
z2
z3


 =



0

0

0




and factor. 

0− x 5 7

−2 7− x 7

−1 1 4− x





z1
z2
z3


 =



0

0

0


 (∗)

This homogeneous system has nonzero solutions if and only if the matrix is
singular, that is, has a determinant of zero.
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Some computation gives the determinant and its factors.

0 =

∣∣∣∣∣∣

0− x 5 7

−2 7− x 7

−1 1 4− x

∣∣∣∣∣∣

= x3 − 11x2 + 38x− 40 = (x− 5)(x− 4)(x− 2)

So the eigenvalues are λ1 = 5, λ2 = 4, and λ3 = 2.
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Characteristic polynomial

?? Definition The characteristic polynomial of a square matrix T is the
determinant |T − xI| where x is a variable. The characteristic equation is
|T − xI| = 0. The characteristic polynomial of a transformation t is the
characteristic polynomial of any matrix representation RepB,B(t).

A criteria for diagonalizability
?? Corollary An n×n matrix with n distinct eigenvalues is diagonalizable.
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Matrix Exponentials
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Matrix Exponentials I

Let M be an n × n real or complex matrix. The exponential of M,
denoted by eM or exp(M), is the n×n matrix given by the power series

eM =

∞∑
k=0

1

k!
Mk (1)

where M0 is defined to be the identity matrix I with the same dimensions
as M.

Properties

eZ = I

exp(MT ) = exp(M)T , where MT denotes the transpose of M

exp(M?) = exp(M)?, where M? denotes the conjugate transpose of M

If K is invertible then exp(KMK−1) = K exp(MK−1)

If MK = KM then eMeK = eM+K
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Matrix Exponentials II

The proof of this identity is the same as the standard power-series
argument for the corresponding identity for the exponential of real
numbers. That is to say, as long as M and K commute, it makes no
difference to the argument whether M and K are numbers or matrices.

Consequences of the preceding identity are the following:

eaMebM = e(a+b)M for a, b ∈ R
eMe−M = I

Here a few important relations to remember: if M is symmetric then eM

is also symmetric, and if M is skew-symmetric then eM is orthogonal. If M
is Hermitian then eM is also Hermitian, and if M is skew-Hermitian then
eM is unitary.

Remember: a Hermitian matrix (or self-adjoint matrix) is a complex
square matrix that is equal to its own conjugate transpose.
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The Symplectic Form of Hamilton’s EQM
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The Symplectic Form of Hamilton’s EQM I
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The terms canonical transformation and symplectic condition refer to trans-
formations of the form

JTSJ = S. (2)

and explicitly expresses the symplectic condition. It is a constraint
upon the Jacobian matrix J of a canonical transformation. In fact,
it is a necessary and sufficient condition for all canonical transforma-
tions.

As a consequence:

The solutions of Hamilton’s equations of motion or equivalently the
motions of Hamiltonian systems are themselves canonical transfor-
mations and therefore obey the symplectic condition.
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Symplectic Matrices and Groups I

In a purely mathematical sense, (??) defines a set of even-dimensioned
square matrices which form a group (called appropriately the symplectic
group Sp(2N) just as the associated canonical transformations form a
group.

Since for every canonical transformation, there exists a corresponding
symplectic (Jacobian) matrix, the group property of the canonical
transformations implies the group property of the matrices. However it is
straightforward to demonstrate the group properties of the matrices
directly by verifying that they satisfy the following conditions
1) (J1J2)J3 = J1(J2J3) (associative law)
2) Every product of two elements and the square of each element is a

member of the group.
3) The group contains the (symplectic) unit element.
4) J−1J = 1. Since their determinants do not vanish, all symplectic

matrices have inverses.
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Symplectic Matrices and Groups II

The symplectic condition (??) constitutes a fairly substantial set of
constraints, one of the most important of which concerns the deter-
minant of the matrix. Since the determinant of the product of two
square matrices of equal dimension is equal to the product of their
determinants, the square of the determinant of a symplectic matrix,
and therefore of the Jacobian matrix of a canonical transformation,
is equal to

det J2 = |J|2 = 1. (3)

Equation (??) is a main factor in demonstrating Liouville’s Theorem.
For a two-by-two symplectic matrix, the determinant condition is the

sole constraint; it completely determines the symplecticity of the matrix.

For a single degree of freedom, uncoupled to any other, the determi-
nant condition is equivalent to the symplectic condition.
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Symplectic Matrices and Groups III

For matrices of higher order than two, the symplectic condition implies
more constraints among the matrix elements than the one expressed by
(??). It turns out that the number of independent matrix elements in a
symplectic matrix of order 2N is N(2N + 1), so the number of constraints
among the (2N)2 elements is

number of constraints :N(2N− 1).

It can be shown (exercise) that any real symplectic matrix J sufficiently
near the identity can be written

J = exp SAs, (4)

where As is a real symmetric matrix and S is of the same order as As.
For matrices near the identity, this establishes a injective (one-to-one)
relationship between real symplectic matrices and real symmetric matrices.
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Eigenvalues of J I

In beam dynamics, we are primarily interested in real coordinate
systems, and the Jacobian matrices of transformations between real
systems are real matrices. Consequently the symplectic matrices we
deal with are also real, and the eigenvalues of real, symplectic matrices
form quite a restricted set [Dragt]. The eigenvalues are the roots of the
characteristic polynomial,

P(λ) = |J− λ1|. (5)

We note that P(λ) has degree 2N and the characteristic equation is

P(λ) = 0. (6)

We immediately can state that λ = 0 cannot be a root and remember that
this equation has 2N roots, and the product of the roots is equal to the
constant term of the polynomial.

2N∏
i=1

λi = det J = 1. (7)
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Eigenvalues of J II

Either the eigenvalues are real or they occur in complex conjugate pairs.
Appealing only to the properties of symplectic matrices, it can also be
shown that

λ−NP(λ) = λNP

(
1

λ

)
, (8)

with the consequence that if λ is a root, so is its reciprocal 1/λ, and
furthermore, these roots have the same multiplicities (+1 or −1), then that
root has even multiplicity. Properties of the λ:
1) They are real or they occur in complex conjugate pairs.
2) They occur in reciprocal pairs, each member of a pair having the same

multiplicity.
3) If either +1 or −1 is an eigenvalue, it has even multiplicity.
When combined, the conditions just enumerated place strong restrictions

on the possible eigenvalues of a real symplectic matrix.

the the eigenvalues cannot all lie inside or all lie outside the unit circle

from a dynamics system point of view, we can say that the linear part
of a symplectic map at a fixed point is a symplectic matrix
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Eigenvalues of the 2× 2 Case I

Consider first the simplest case of a 2× 2 real symplectic matrix with
eigenvalues λ1 and λ2. With the reciprocal property, we get immediately

λ1λ2 = 1 (9)

λ1, λ2 ∈ R
Suppose, now, that λ1 > 1 :→ λ2 < 1.
Similarly, if λ1 < −1 :→ 0 > λ2 > −1

λ1 ∈ C
λ2 = λ̄1

This condition, when combined with (??), shows that in this case
λ1 and λ2 must lie on the unit circle in the complex plane. Finally, there
are the two special cases λ1 = λ2 = 1 and λ1 = λ2 = −1 Altogether, there
are five possible cases. They are listed below along with names and
designations whose significance will become clear later on.
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Eigenvalues of the 2× 2 Case II

1) Hyperbolic case (unstable): λ1 > 1 and 0 < λ2 < 1.
2) Inversion hyperbolic case (unstable): λ1 < −1 and − 1 < λ2 < 0.
3) Elliptic case (stable): λ1 = exp iφ, λ1 = exp−iφ. (Eigenvalues are

complex conj. and lie on the unit circle).
4) Parabolic case (generally linearly unstable): λ1 = λ2 = 1 .
5) Inversion parabolic case (generally linearly unstable): λ1 = λ2 = −1 .

Note that in all cases both eigenvalues cannot lie inside the unit circle nor
can both eigenvalues lie outside the unit circle.
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Eigenvalues of the 2× 2 Case III

Figure : Possible cases for the eigenvalues of a 2× 2,R symplectic matrix [Dragt].
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Symplectic Condition and Poisson Brackets I

What is remarkable is that the symplectic condition

JTSJ = S.

applies also to a nonlinear system if we identify J to be the Jacobian matrix
of the map, whose elements are defined as

Ji,j =
∂Xi
∂(X0)j

(10)

where (X0)j is the j-th component of the initial coordinates of a particle at
s = 0, Xi is the i-th component of the final state X of the particle at an
arbitrary position s. In a linear system, the Jacobian matrix is just the
transformation matrix, and is independent of the particle coordinates.

In a nonlinear system, the Jacobian matrix J depends on the components
of X0, and the symplectic condition must be satisfied for all X0.
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Symplectic Condition and Poisson Brackets II

Another consequence of a symplectic map is that it obeys the Liouville
theorem, i.e. the phase space volume is conserved as the system evolves
according to the map.

Symplectic maps therefore are area-preserving maps.

Liouville theorem follows because the Jacobian matrix, being
symplectic, has unit determinant, which in turn assures that a volume
element in phase space maintains its volume as it evolves with time.
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If time permits: Similarity Definition and Examples
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Similar matrices

?? Definition The matrices T and T̂ are similar if there is a nonsingular P
such that T̂ = PTP−1.
Example Consider the derivative map d/dx : P2 → P2. Fix the basis
B = 〈1, x, x2〉 and the basis D = 〈1, 1+ x, 1+ x+ x2〉. In this arrow diagram
we will first get T , and then calculate T̂ from it.

Vwrt B
t−−−−−→
T

Vwrt B

id

y id

y

Vwrt D
t−−−−−→
T̂

Vwrt D

The action of d/dx on the elements of the basis B is 1 7→ 0, x 7→ 1, and
x2 7→ 2x.

RepB(
d

dx
(1)) =



0

0

0


 RepB(

d

dx
(x)) =



1

0

0


 RepB(

d

dx
(x2)) =



0

2

0



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Similar matrices

?? Definition The matrices T and T̂ are similar if there is a nonsingular P
such that T̂ = PTP−1.
Example Consider the derivative map d/dx : P2 → P2. Fix the basis
B = 〈1, x, x2〉 and the basis D = 〈1, 1+ x, 1+ x+ x2〉. In this arrow diagram
we will first get T , and then calculate T̂ from it.

Vwrt B
t−−−−−→
T

Vwrt B

id

y id

y

Vwrt D
t−−−−−→
T̂

Vwrt D

The action of d/dx on the elements of the basis B is 1 7→ 0, x 7→ 1, and
x2 7→ 2x.

RepB(
d

dx
(1)) =



0

0

0


 RepB(

d

dx
(x)) =



1

0

0


 RepB(

d

dx
(x2)) =



0

2

0



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So we have this matrix representation of the map.

T = RepB,B(
d

dx
) =



0 1 0

0 0 2

0 0 0




The matrix changing bases from B to D is RepB,D(id). We find these by
eye

RepD(id(1)) =



1

0

0


 RepD(id(x)) =



−1

1

0


 RepD(id(x

2)) =



0

−1

1




to get this.

P =



1 −1 0

0 1 −1

0 0 1


 P−1 =



1 1 1

0 1 1

0 0 1




Now, by following the arrow diagram we have T̂ = PTP−1.

T̂ =



0 1 −1

0 0 2

0 0 0



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To check that, and to underline what the arrow diagram says

Vwrt B
t−−−−−→
T

Vwrt B

id

y id

y

Vwrt D
t−−−−−→
T̂

Vwrt D

we calculate T̂ directly. The effect of the map on the basis elements is
d/dx(1) = 0, d/dx(1+ x) = 1, and d/dx(1+ x+ x2) = 1+ 2x. Representing
of those with respect to D

RepD(0) =



0

0

0


 RepD(1) =



1

0

0


 RepD(1+ 2x) =



−1

2

0




gives the same matrix T̂ = RepD,D(d/dx) as above.
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The definition doesn’t require that we consider the underlying maps. We
can just multiply matrices.
Example Where

T =



0 −1 −2

2 3 2

4 5 2


 P =



1 1 0

−1 1 0

0 0 3




(note that P is nonsingular) we can compute this T̂ = PTP−1.

T̂ =




2 0 0

3 1 4/3

27/2 3/2 2



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