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Linear Optics Calculations

Goal

The aim of the ”Linear Optics Calculations” lecture and the
relative Hands-On session is three-fold:

to present the matrix formalism applied to Linear Optics,

to use the matrix formalism to perform linear Calculations,

to break the ice for the concepts that will be generalised
during the next days.
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References I

60-years anniversary of the seminal paper of linear optics.
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References II

8 years before, N. Christophilos filed a patent on it.

A lot of Greece in the linear (and not-only-linear. . . ) optics theory.
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References III

A list1 of books presenting Linear Optics (and much more).

1Very incomplete! Apologies for the omissions.
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Alternating-gradient as Beam Dynamics foundations

The alternating-gradient was a breakthrough in the history of
accelerators based on linear algebra! It is still the very first step for
any new technology,

and for facing the non-linear problems that you will discuss during
the following lectures and your professional life.
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The three ways

One can consider three typical approaches to introduce the linear
optics:

solving the equation of motion (the historical one),

using Hamiltonian formalism (opening the horizon to the
non-linear optics, see later Lectures),

using the linear matrices (natural choice for the linear optics
computation, our approach).
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Our reference system I

To describe the motion of a particle in an optics channel, as usual,
we fix a coordinate system to define the status of the particle at a
given instant t1 and a set of laws to transform the coordinates of
the system from t1 to a new instant t2.

Figure 1: From the MAD-X User’s Reference Manual.
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Our reference system II

Coordinates

It is convenient to define the motion along a reference
trajectory of the 3D phase space (reference particle
trajectory/orbit), so to take into account only the variations
along that trajectory (Frenet-Serret frame).

In addition, it is convenient to replace as independent variable
the time, t, with the longitudinal position, s, along the
reference trajectory/orbit.

The natural choice for the variables are (x , pxp0
, y ,

py
p0
, z , pzp0

)
(phase-space, see Hamiltonian approach). p0 is the amplitude
of the reference particle momentum.

Assuming ps ≈ p0 one can consider also the trace-space
(x , x ′ = dx

ds , y , y
′ = dy

ds , z ,
∆p
p0

) (see equation of motion
approach).
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Linear transformations

Our system is linear IFF the evolution from the coordinates U to V
can be expressed as

V = M U

where M is a square matrix and does not depend on U.

BUT we are interested only on a special set of linear
transformation: the so called symplectic linear transformations,
that is the ones associated to a simplectic matrix.
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Bi-linear transformations

Let us define the bi-linear transformation F as

V T F U. (1)

This is a function of two vectors (e.g. U and V ).
Let consider, for simplicity, the 1D case, that is, U = (ua, ub)T and
V = (va, vb)T .
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EXAMPLE: orthogonal matrix

Assuming

F = I =

(
1 0
0 1

)
, (2)

the bilinear transformation I is the inner product between
V = (va, vb)T and U = (ua, ub)T :

V T I︸︷︷︸
F

U = vaua + vbub.

A matrix M preserves the bi-linear transformation I (then the
projections) IFF

V TMT︸ ︷︷ ︸
(M V )T

I M U = V T I U → MT I M = I ,

then M is called orthogonal matrix.
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EXAMPLE: symplectic matrix

Assuming

F = Ω =

(
0 1
-1 0

)
,

the bi-linear transformation Ω is proportional to the amplitude of
the outer product between V = (va, vb)T and U = (ua, ub)T :

V T Ω︸︷︷︸
F

U = vaub − vbua.

that is proportional to the area defined by the vectors. A matrix M
preserves the bi-linear transformation Ω (related to the outer
product) IFF

V TMT Ω M U = V T Ω U → MT Ω M = Ω,

then M is called symplectic matrix.
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EXAMPLE: visualise an orthogonal and symplectic
transformation.
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Matrix symplecticity in nD

From 1D this can generalized to nD and Ω becomes a 2n × 2n
matrix:

Ω =


0 1
−1 0

0

. . .

0
0 1
−1 0

 . (3)

Example of 2D symplectic matrix:
1 0 0 0
0 1 1 0
0 0 1 0
1 0 0 1

 .
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Properties of symplectic matrices

If M1 and M2 then M = M1M2 is symplectic too.

If M is symplectic then MT is symplectic.

Every symplectic matrix is invertible

M−1 = Ω−1MTΩ (4)

and M−1 is symplectic.

A necessary condition for M to be symplectic is that
det(M) = +1. This condition is necessary and sufficient for
the 1D case. We will consider 1D case.

There are symplectic matrices that are defective, that is it

cannot be diagonalized, e.g.,

(
1 1
0 1

)
.
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Domino effect
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Symplectic matrix and accelerators

Please have a look on this generating set of the symplectic group

(
G 0
0 1

G

)
︸ ︷︷ ︸

thin telescope

,

(
1 L
0 1

)
︸ ︷︷ ︸

drift

,

(
1 0
−1

f 1

)
︸ ︷︷ ︸

thin quad

.

Among the above matrices you can recognise the one of a L-long
drift and thin quadrupole with focal length f .

Conveniently combining drifts and thin quadrupole one can find
back the well known matrices for the thick elements.
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EXAMPLE: a thick quadrupole I

One can derive the transfer matrix of a thick quadrupole of length
L by and normalized gradient K1 by considering the following limit

lim
n

[(
1 0

−K1 L
n 1

)(
1 L

n
0 1

)]n
= cos

(√
K1L

)
sin(
√

K1L)√
K1

−
√

K1 sin
(√

K1L
)

cos
(√

K1L
)


Therefore we now have a correspondence between elements along
our machine (drift, bending, quadrupoles, solenoids,. . . ) and
symplectic matrices.
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EXAMPLE: a thick quadrupole II

To compute the above limit and, in general, for symbolic
computations one can profit of the available symbolic computation
tools (e.g., MathematicaTM).

Code

G. Sterbini Linear Optics Calculations
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Tracking in a linear system

Given a sequence of elements M1,M2, . . .Mk (the lattice), the
evolution of the coordinate, Xn, along the lattice for a given
particle can be obtained as

Xn = Mn . . .M1 X0 for n ≥ 1. (5)

The transport of the particle along the lattice is called tracking.
The tracking on a linear system is trivial and boring. . .

In the following we will try to decompose the trajectory of the
single particle in term of invariant of the motion and properties of
the lattice, and via those properties we will describe the statistical
evolution of an ensemble of particles.

So instead of tracking an ensemble we will concentrate to solve the
properties of the lattice.
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Starting a long journey. . .

Voyager 1 is the Man-built object farther away from Earth
≈ 20 light-hours.
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Periodic lattice and stability I

We study now the motion of the particles in periodic lattice, that
is lattice constituted by a indefinite repetition of the same basic
C -long period MOTM , the so-called One-Turn-Map:

MOTM(s0) = MOTM(s0 + C ).

From Eq. 5 we get

Xn = Mn
OTM X0

and we study the property of MOTM to have stable motion in the
lattice, that is

|Xn| < |X̂ | for all X0 and n.

In other words, we need to study the if all the elements of the
Mn

OTM stay bounded.
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Periodic lattice and stability II

If MOTM can be expressed as a Diagonal-factorization

MOTM = P

(
λ1 0
0 λ2

)
︸ ︷︷ ︸

D

P−1,

after m-turns, it yields that

Mm
OTM = PDP−1︸ ︷︷ ︸

1

×PDP−1︸ ︷︷ ︸
2

× · · · × PDP−1︸ ︷︷ ︸
m

= PDmP−1.

Therefore the stability depends only on the eigenvalues of MOTM .

Note that the if V is an eigenvector also kV , k 6= 0 is an
eigenvector. Therefore P is not uniquely defined: we chose it such
that det(P) = −i .
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Periodic lattice and stability III

For a real matrix the eigenvalues, if complex, appear in
complex conjugate pairs.

For a symplectic matrix MOTM

2n∏
i

λi = 1

where λi are the eigenvalues of MOTM .

Therefore for 2x2 symplectic matrix the eigenvalues can be
written as λ1 = e iµ and λ2 = e−iµ → Dm = D(mµ).

If µ is real then the motion is stable we can define the fractional
tune of the periodic lattice as µ

2π .
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R-factorization of the MOTM I

The Diagonal-factorization we introduced is convenient to check
the stability but not to visualize the turn-by-turn phase space
evolution of the particle. To do that it is convenient to consider
the Rotation-factorization

MOTM = P̄

(
cosµ sinµ
− sinµ cosµ

)
︸ ︷︷ ︸

R(µ) is orthogonal

P̄−1. (6)

This is very important since implies that the MOTM is similar to a
rotation in phase space (see Werner’s lecture).
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R-factorization of the MOTM II

To go from Diagonal to Rotation-factorization we note that

(
cosµ sinµ
− sinµ cosµ

)
︸ ︷︷ ︸

R(µ)

=

(
1√
2

1√
2

i√
2
− i√

2

)
︸ ︷︷ ︸

S−1

(
e iµ 0
0 e−iµ

)
︸ ︷︷ ︸

D(µ)

(
1√
2
− i√

2
1√
2

i√
2

)
︸ ︷︷ ︸

S

and therefore

Rm = R(mµ),

MOTM = P S︸︷︷︸
P̄

S−1 D S︸ ︷︷ ︸
R

S−1 P−1︸ ︷︷ ︸
P̄−1

We note that det(P̄) = 1.
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Twiss-factorization of MOTM I

We note that

R(µ) =

(
1 0
0 1

)
cosµ+

(
0 1
−1 0

)
sinµ,

yielding the, so called, Twiss-factorization

MOTM = P̄I P̄−1︸ ︷︷ ︸
I

cosµ+ P̄ΩP̄−1︸ ︷︷ ︸
J

sinµ

Where J has three properties: det(J) = 1, J11 = −J22, J12 > 0.

Code: J properties
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Twiss-factorization of MOTM II

Therefore the following parametric expression has been proposed

J =


α

>0︷︸︸︷
β

− 1 + α2

β︸ ︷︷ ︸
γ>0

−α


defining the Twiss parameters of the lattice at the start of the
sequence MOTM . It is very important to not that they are not
depending on m since

Mm
OTM = I cos(mµ) + J sin(mµ)

In other words the Twiss parameters are periodic (compare to
Floquet theorem).
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Twiss-factorization of MOTM III

From the definition of J follows, J = P̄ΩP̄−1, the one of

P̄ =

( √
β 0

− α√
β

1√
β

)
=

(√
β 0

0 1√
β

)(
1 0
− α√

β
1

)

We note that by choosing detP = −i we got det P̄ = 1 that is we
expressed M as the product of orthogonal and symplectic matrices.

and

P = P̄S−1 =

( √
β
2

√
β
2

−α+i√
2β

−α−i√
2β

)
.
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Where do we stand?

Given a symplectic MOTM(s), if diagonalizable, we can study three
equivalent periodic problems

MOTM(s)m = P D(mµ) P−1,

MOTM(s)m = P̄ R(mµ) P̄−1,

MOTM(s)m = I cos(mµ) + J sin(mµ).

The previous factorizations allow us to reduce the power of a
matrix to an algebric multiplication (mµ). We expressed P, P̄ and
J as function of β and α parameters.

→ HANDS-ON EXERCISE ←

Code

From MOTM(s) compute D (check stability) and P (force
det(P) = −i), then P̄ = PS and J = P̄ΩP̄−1. You therefore get
the fractional tune and the Twiss parameters at s0.
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MOTM(s0) and MOTM(s1)

MOTM(s) is a function of s: are µ, β and α all s-function?

Given a C-long periodic lattice and two longitudinal positions s0

and s1 (s1 > s0), the transformation from s0 to s1 + C can be
expressed as

s0 s1 s1 + C

s0 s0 + C s1 + C

MOTM(s1) M = M MOTM(s0)

where M is the transformation from s0 to s1. This implies

MOTM(s1) = M MOTM(s0) M−1

→ the matrices MOTM(s1) and MOTM(s2) are similar.
→ same eigenvalues: the MOTM is s-dependent but the Q is not.
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β and α transport I

On the other hand we observe that β and α are s-dependent
function and we have:

MOTM(s1) = M MOTM(s0) M−1 = M (I cosµ+ J(s0) sinµ) M−1,

therefore(
α(s1) β(s1)
−γ(s1) −α(s1)

)
︸ ︷︷ ︸

J(s1)

= M

(
α(s0) β(s0)
−γ(s0) −α(s0)

)
︸ ︷︷ ︸

J(s0)

M−1.
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β and α transport II

To simplify from a computational point of view the Eq. 7 we can
use the Eq. 4 (inverse of a symplectic matrix) and this yields(

α(s1) β(s1)
−γ(s1) −α(s1)

)
Ω−1 = M

(
α(s0) β(s0)
−γ(s0) −α(s0)

)
Ω−1 MT ,

that is (
β(s1) −α(s1)
−α(s1) γ(s1)

)
︸ ︷︷ ︸

J(s1) Ω−1

= M

(
β(s0) −α(s0)
−α(s0) γ(s0)

)
︸ ︷︷ ︸

J(s0) Ω−1

MT . (7)

→ HANDS-ON EXERCISE ←
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EXAMPLE: the β-function in a drift

To compute the Twiss parameters in a drift we can simply apply
the previous equation(

β(s) −α(s)
−α(s) γ(s)

)
=

(
1 s
0 1

)(
β0 −α0

−α0 γ0

)(
1 0
s 1

)
yielding

β(s) = β0 − 2α0s + γ0s
2

and
α(s) = α0 − γ0s.

G. Sterbini Linear Optics Calculations



Introduction Lattices Ensembles MAD-X Hands-On Twiss parameters CS invariant CO, D and ξ

The differential relation between α and β I

In order to see differential relation with the matrix formalism we
consider the general ∆M matrix for the infinitesimal offset, ∆s,

∆M =

(
1 ∆s

−K (s)∆s 1

)
.

Note that ∆M is symplectic only for ∆s → 0.

Then we have(
β(s + ∆s) −α(s + ∆s)
−α(s + ∆s) γ(s + ∆s)

)
︸ ︷︷ ︸

J(s+∆s)Ω−1

= ∆M

(
β(s) −α(s)
−α(s) γ(s)

)
︸ ︷︷ ︸

J(s)Ω−1

∆MT .
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The differential relation between α and β II

From that we have that

lim
∆s→0

J(s + ∆s)− J(s)

∆s
Ω−1 =

(
β′(s) −α′(s)
−α′(s) γ′(s)

)
where we used standard notation d ·

ds = ·′. One gets

β′(s) = −2α(s)

α′(s) = −γ + K (s)β(s).

Replacing α and γ in the latter equation with functions of β we
get the non-linear differential equation:

β′′β

2
− β′2

4
+ Kβ2 = 1.
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EXAMPLE: from matrices to Hill’s equation

Following the notation already introduced

X (s + ∆s) = ∆M X (s)

with X (s) = (x(s), px (s)
p0

)T ≈
p0≈pz

(x(s), x ′(s))T , therefore

X ′(s) =

(
x ′(s)
x ′′(s)

)
= lim

∆s→0

X (s + ∆s)− X (s)

∆s
=

(
x ′(s)

−K (s)x(s)

)
we find back the Hill’s equation

x ′′(s) + K (s)x(s) = 0.
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Where do we stand?

We learnt how to propagate via linear matrices the initial
Twiss parameters along the machine.

→ HANDS-ON EXERCISE ←

We also retrieved several differential relations between α and
β, β and K , and X and K : these are, in general, not practical
for computations.

The next question is, moving from the lattice to the particle,
is there an invariant of the motion?

G. Sterbini Linear Optics Calculations
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Courant-Snyder invariant I

Given a particle with coordinate X we can observe that the
quantity

XTΩ J−1 X

is an invariant of the motion: it is called the Courant-Snyder
invariant, JCS . In fact from Eq. 7

XT
1 Ω J−1

1 X1 = XT
0 MT (M J0Ω−1 MT )−1M X0 = XT

0 Ω J−1
0 X0

Code: find back the CS invariant in the trace-space

G. Sterbini Linear Optics Calculations
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Courant-Snyder invariant II

In the normalized phase-space, remembering that X = P̄ X̃ , we
have

XTΩ J−1 X = X̃T P̄TΩ J−1P̄︸ ︷︷ ︸
I

X̃ = X̃T X̃

that is the JCS is the square of the circle radius defined by the
particle initial condition.
This normalized phase-space is also called action-angle phase
space. The particle action is defined as JCS/2.

G. Sterbini Linear Optics Calculations
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What about the phase µ(s)? I

What is the ∆µ introduced by a linear matrix M =

(
m11 m12

m21 m22

)
?

In normalized space the transport from s to s + ∆s does not
change JCS but the angle by ∆µ = µ(s + ∆s)− µ(s).
To compute it we move to the normalized phase-space

X (s) = P(s) X̃ (s) and X (s + ∆s) = P(s + ∆s) X̃ (s)

and from
X (s + ∆s) = M X (s),

it yields

X̃ (s+∆s) = P(s+∆s)−1 M P(s)X̃ (s) =

(
cos ∆µ sin ∆µ
− sin ∆µ cos ∆µ

)
X̃ (s).
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What about the phase µ(s)? II

That is

tan ∆µ =
sin ∆µ

cos ∆µ︸ ︷︷ ︸
It does depend only on β and α in s!

=
m12

m11 β(s)−m12 α(s)
.

Code: derivation of ∆µ

→ HANDS-ON EXERCISE ←
G. Sterbini Linear Optics Calculations
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EXAMPLE 1: µ(s) differential equation

If M =

(
m11 m12

m21 m22

)
=

(
1 ∆s

−K (s)∆s 1

)
then one gets

µ′ = lim
∆s→0

tan ∆µ

∆s
= lim

∆s→0

1

β(s)− α(s) ∆s
=

1

β(s)
,

that is the well know expression

µ(s) =

∫ s

s0

1

β(σ)
dσ + µ(s0).
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EXAMPLE 2: Betatron oscillation I

How we describe a betatronic oscillation from s1 to s2 in terms of
Twiss parameters and initial conditions?

X (s1)

X̃ (s1) X̃ (s2)

X (s2)

P̄
−

1
(s

1
)

R(φ)

P̄
(s

2 )

It is easy by transforming the vector X in the normalized phase
space in s1, moving it from s1 to s2 in the normalized space (pure
rotation of the phase φ) and back transform it in the original phase
space.
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EXAMPLE 2: Betatron oscillation II

Code

M = P̄(s2) R(φ)P̄(s1)−1 =

=

 √
β2
β1

(cosφ+ α1 sinφ)
√
β1β2 sinφ

α1−α2√
β1β2

cosφ− 1+α1α2√
β1β2

sinφ
√

β1
β2

(cosφ− α2 sinφ)
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EXAMPLE 3: Solution of Hill’s equation

How we describe a betatronic oscillation in machine considering a
JCS and phase µ0? This is a special case of the previous one. With
the JCS and phase µ0 we are already in the normalized phase
space, therefore we need only to rotate by µ(s) and back transform
it in the original phase space.

X (s) = P̄(s)

( √
JCS cos(µ+ µ0)

−
√
JCS sin(µ+ µ0)

)
=

=

( √
JCSβ(s) cos(µ+ µ0)

−
√

JCS
β(s) [α(s) cos(µ+ µ0) + sin(µ+ µ0)]

)

where one recognizes the solutions of the Hill’s equation.
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Computing the closed orbit

Up to now we assumed that the closed orbit (CO) corresponded to
the reference orbit. This is not always true.
Assuming a MOTM(s0) and a single thin kick Θ at s0 (independent
from Xn) we can write

Xn+1(s0) = MOTM(s0) Xn(s0) + Θ.

In the 1D case Θ can represent a kick of a dipole correction or
misalignment of a quadrupole (Θ = (0, θ)T ). The closed orbit
solution can be retrieved imposing Vn+1 = Vn (fixed point),
yielding

Xn(s0) = (I −MOTM(s0))−1Θ(s0).

Please note that the CO is discontinuous at s0 so the previous
formula refers to the CO after the kick. In presence of multiple
Θ(si ) one can sum the single contributions along s.

→ HANDS-ON EXERCISE ←
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EXAMPLE: from the CO matrix to the CO formula

Code: closed orbit formula

We found back the known equation

xCO(s) =

√
β(s)β(s0)

2 sin(πQ)
θs0 cos(φ− πQ) (8)

where φ is the phase advance (> 0) from s0 to s.
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Computing dispersion and chromaticity I

Up to now we considered all the optics parameters for the
on-momentum particle. To evaluate the off-momentum effect of
the closed orbit and the tune we introduce the
dispersion,Dx ,y (s, ∆p

p0
), and chromaticity, ξx ,y ( ∆p

p0
), respectively, as

∆COx ,y (s) = Dx ,y

(
s,

∆p

p0

)
× ∆p

p0
, Dx ,y (s + C ) = D(s)

and

∆Qx ,y = ξx ,y

(
∆p

p0

)
× ∆p

p0
.

→ HANDS-ON EXERCISE ←
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Computing dispersion and chromaticity II

In order to compute numerically the Dx ,y and ξx ,y one can

compute first the COx ,y and the Qx ,y as function of of ∆p
p0

.

To do that one has to compute MOTM(s, ∆p
p0

), that is evaluate the

property of the element of the lattice as function of ∆p
p0

.

In a thin quadrupole the focal length linearly scales with the
beam rigidity:(

1 0
− 1

f ( ∆p
p0

)
1

)
→

(
1 0

− 1
f0×(1+ ∆p

p0
)

1

)
.

A dipolar kick θ, scales with the inverse of the beam rigidity:(
0

θ( ∆p
p0

)

)
→

(
0
θ0

1+ ∆p
p0

)
.
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Where do we stand?

We learnt how to compute

the invariant of the motion JCS ,

the betatronic phase, µ(s), along the lattice,

the CO given a set of kicks,

the dispersion and chromaticity.

→ HANDS-ON EXERCISE ←

We will consider in the following an ensemble of non-interacting
particle and we will introduce the concept of beam emittance and
beam matching.
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The Beam distribution I

The beam can be considered as a set of N particles.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x [mm]

20

15

10

5

0

5

10

15

20

x′
 [1

0
6 ]
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The Beam distribution II

To track N particles is possible by using the same approach of the
single particle tracking were X becomes XBeam, a 2n × N matrix:

XBeam =
(
X1,X2, . . . ,Xn

)
We will restrict ourself to the 1D case (n=1).
We are looking for one or more statistical quantities that
represents this ensemble and its evolution in the lattice.
A natural one is the average JCS over the ensemble:

1

N

N∑
i=1

JCS ,i = 〈JCS〉

From the definition it follows that the quantity is preserved during
the beam evolution along the lattice.
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Beam emittance

We will see in the hands-on that 〈JCS〉 converges, under specific
assumptions, to twice the rms emittance of the beam, εrms

εrms =

√√√√√det(
1

N
XBX

T
B︸ ︷︷ ︸

σ matrix

).

One can see that the εrms is preserved for the symplectic linear
transformation M from s0 to s1 (see Cauchy-Binet theorem):

ε2
rms(s0) = det(

1

N
XBX

T
B )

ε2
rms(s1) = det(M

1

N
XBX

T
B︸ ︷︷ ︸

σ(s0)

MT ) = detM︸ ︷︷ ︸
=1

det(
1

N
XBX

T
B ) detMT︸ ︷︷ ︸

=1

where XB denotes XB(s0). Note that σ(s1) = M σ(s0) MT .
G. Sterbini Linear Optics Calculations



Introduction Lattices Ensembles MAD-X Hands-On Beam emittance Matched distribution

The σ matrix

By its definition we have (e.g., 1D trace-space) that

σ =

(
1
N

∑N
i=1 xixi

1
N

∑N
i=1 xix

′
i

1
N

∑N
i=1 x

′
i xi

1
N

∑N
i=1 x

′
i x
′
i

)
=


x2
rms︷︸︸︷
〈x̄2〉 〈xx ′〉
〈xx ′〉 〈x̄ ′2〉︸︷︷︸

x ′2rms


and therefore we can write

εrms =
√
〈x2〉〈x ′2〉 − 〈xx ′〉2.

So we show how to numerically transport the second-order
moments of the beam distribution.
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Matched beam distribution I

A beam distribution is matched to the specific optics functions ᾱ
and β̄ if the corresponding normalized distribution is statistically
invariant by rotation in the normalized space. In other words it has
an azimuthal symmetry.
It is worth noting that since P̄−1 is a symplectic matrix and
defining X̄B = P̄−1XB we have that ε̄rms = εrms and for a matched
beam we have

σ̄ =
1

N
X̄B X̄

T
B = P̄−1σ P̄ =


x̄2
rms︷︸︸︷
〈x̄2〉 〈x̄ x̄ ′〉
〈x̃ x̄ ′〉 〈x̄ ′2〉︸︷︷︸

x̄ ′2rms

 =

(
εrms 0

0 εrms

)
.

Therefore σ̄ is diagonal.
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Matched beam distribution II

For a beam distribution matched to the specific optics functions ᾱ
and β̄ the we have

σ = P̄σ̄ P̄−1 =

(
β̄εrms −ᾱεrms

−ᾱεrms γ̄εrms

)
(9)

where we found back the rms beam size and divergence formulas,√
β̄εrms and

√
γ̄εrms , respectively.

The rms size of a matched beam in a periodic stable lattice and at
given position s0 is a turn-by-turn invariant.

→ HANDS-ON EXERCISE ←
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About ensembles

We extended the single particle computation method to
transport ensembles of particles.

We introduced the concepts of beam σ matrix, the εrms , its
relation with the 〈JCS〉 and the concept of beam matching.

→ HANDS-ON EXERCISE ←
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MAD-X in 20 min. . .

DISCLAIMER

We will use MAD-X to benchmark the optics code we are
going to write during the hands-on.

This material is intended to be an short introduction to
MAD-X: a large part of the code capabilities are not discussed
in details or are not discussed at all!

Please refer to MAD-X web site http://madx.web.cern.ch/ to
learn more.

G. Sterbini Linear Optics Calculations
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What is MAD-X?

Methodical Accelerator Design version X

A general purpose (free) beam optics and lattice program.

It is used since more than 30 years.

MAD-X is written in C/C++/Fortran77/Fortran90 (source
code is available under CERN copyright).
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A general purpose beam optics code

For circular machines, beam lines and linacs. . .

Describe/document parameters from machine description.

Design a lattice for getting the desired properties (matching).

Simulate beam dynamics, imperfections and operation.
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A general purpose beam optics code

MAD-X is

multiplatforms (Linux/OSX/WIN. . . ),

very flexible and easy to extend,

made for complicated applications, powerful and rather
complete,

mainly designed for large projects (LHC, CLIC, FCC. . . ).
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In large projects (e.g., LHC):

Must be able to handle machines with ≥ 104 elements,

many simultaneous MAD-X users (LHC: more than 400
around the world): need consistent database,

if you have many machines: ideally use only one design
program.
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Describe an accelerator in MAD-X

Goals. . .

Describe, optimize and simulate a machine with several
thousand elements eventually with magnetic elements shared
by different beams, like in colliders.

Define the
machine
hardware

Define
the beam
properties

Activate
the

sequence

Execute the
operations
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MAD-X language

How does MAD-X get this info? Via text (interpreter).

It accepts and executes statements, expressions. . . ,

it can be used interactively (input from command line) or in
batch (input from file),

many features of a programming language (loops, if’s,. . . ).

All input statements are analysed by a parser and checked.

E.g. assignments: properties of machine elements, set up of
the lattice, definition of beam properties, errors. . .

E.g. actions: compute lattice functions, optimize and correct
the machine. . .
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MAD-X input language

Strong resemblance to “C” language (but NO need for
declarations and NOT case sensitive apart in expressions in
inverted commas),

free format, all statements are terminated with ; (do not
forget!),

comment lines start with: // or ! or is between /*. . . */,

Arithmetic expressions, including basic functions (exp, log,
sin, cosh. . . ), built-in random number generators and
predefined constants (speed of the light, e, π, mp, me . . . ).

In particular it is possible to use deferred assignments

regular assignment: a = b, if b changes a does not,

deferred assignment: a := b, if b changes a is updated too.
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Example: deferred assignments

We use the value command to print the variables content.
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Definitions of the lattice elements

Generic pattern to define an element:

label : keyword , properties. . . ;

For a dipole magnet:
MBL: SBEND, L=10.0;

For a quadrupole magnet:
MQ: QUADRUPOLE, L=3.3;

For a sextupole magnet:
MSF: SEXTUPOLE, L=1.0;

In the previous examples we considered only the L property, that is
the length in meters of the element.
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The strength of the elements

The name of the parameter that define the normalized magnetic
strength of the element depends on the element type.

For dipole (horizontal bending) magnet is k0:

k0 = 1
BρBy

[
in m−1

]
For quadrupole magnet is k1:

k1 = 1
Bρ

∂By

∂x

[
in m−2

]
For sextupole magnet is k2:

k2 = 1
Bρ

∂2By

∂x2

[
in m−3

]
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Interlude

What does k1 mean? It is related to the quad focal length 2.

1

k1 Lquad
= f (10)

Assuming k1 = 10−1 m−2 and Lquad = 10−1 m the f = 102 m.

f

k1, Lquad

2thin lens approximation
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Example: definitions of elements

Kicker magnet:

theta = 1e-6;

KICK: HKICKER, L=0, HKICK=theta;

Multipole magnet ”thin” element:

MMQ: MULTIPOLE, KNL = {k0 · l , k1 · l , k2 · l , k3 · l , . . . };

LHC dipole magnet as thick element:

length = 14.3;

p = 7000;

angleLHC = 8.33 * clight * length/p;

MBL: SBEND, ANGLE = angleLHC;
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The lattice sequence

A lattice sequence is an ordered collection of machine elements.
Each element has a position in the sequence that can be defined
wrt the CENTRE, EXIT or ENTRY of the element and wrt the
sequence start or the position of an other element:

label: SEQUENCE, REFER=CENTRE, L=length;
. . . ;
. . . ;
. . . here specify position of all elements. . . ;
. . . ;
. . . ;
ENDSEQUENCE;
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EXAMPLE: www.cern.ch/lhcoptics
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EXAMPLE: the LHC sequence
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Beam definition & sequence activation

Generic pattern to define the beam:

label: BEAM, PARTICLE=x, ENERGYa=y,. . . ;
e.g., BEAM, PARTICLE=proton, ENERGY=7000;//in GeV

aIt is the TOTAL energy!

After a sequence has been read, it can be activated:

USE, SEQUENCE=sequence label;
e.g., USE, SEQUENCE=lhc1;

The USE command expands the specified sequence, inserts the
drift spaces and makes it active.
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Definition of operations

Once the sequence is activated we can perform operations on it.

Calculation of Twiss parameters around the machine (very
important) in order to know, for stable sequences, their main
optical parameters.
TWISS, SEQUENCE=sequence label;//periodic solution
TWISS, SEQUENCE=sequence label, betx=1;//IC solution

Production of graphical output of the main optical function
(e.g., β-functions):
PLOT, HAXIS=s, VAXIS=betx,bety;

Example

TWISS, SEQUENCE=juaseq, FILE=twiss.out;
PLOT, HAXIS=s, VAXIS=betx, bety, COLOUR=100;

G. Sterbini Linear Optics Calculations



Introduction Lattices Ensembles MAD-X Hands-On MAD-X syntax “Hello World!”

EXAMPLE: a the TWISS file

* NAME S BETX BETY

$ %s %le %le %le

"QF" 1.5425 107.5443191 19.4745051

"QD" 33.5425 19.5134888 107.4973054

"QF" 65.5425 107.5443191 19.4745051

"QD" 97.5425 19.5134888 107.4973054

"QF" 129.5425 107.5443191 19.4745051

"QD" 161.5425 19.5134888 107.4973054

"QF" 193.5425 107.5443191 19.4745051

"QD" 225.5425 19.5134888 107.4973054

"QF" 257.5425 107.5443191 19.4745051

"QD" 289.5425 19.5134888 107.4973054

"QF" 321.5425 107.5443191 19.4745051

"QD" 353.5425 19.5134888 107.4973054

"QF" 385.5425 107.5443191 19.4745051

"QD" 417.5425 19.5134888 107.4973054

"QF" 449.5425 107.5443191 19.4745051

"QD" 481.5425 19.5134888 107.4973054

"QF" 513.5425 107.5443191 19.4745051

"QD" 545.5425 19.5134888 107.4973054

"QF" 577.5425 107.5443191 19.4745051

"QD" 609.5425 19.5134888 107.4973054

....

....
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EXAMPLE of the graphical output (ps format)

1000. 1200. 1400. 1600. 1800. 2000. 2200.
Momentum offset =    0.00 %

s (m)

s Periodic horizontal beta function

25.
30.
35.
40.
45.
50.
55.
60.
65.
70.
75.
80.
85.
90.

x
(m

)

G. Sterbini Linear Optics Calculations



Introduction Lattices Ensembles MAD-X Hands-On MAD-X syntax “Hello World!”

Matching global parameters

It is possible to modify the optical parameters of the machine using
the MATCHING module of MAD-X.

Adjust magnetic strengths to get desired properties (e.g., tune
Q, chromaticity dQ),

Define the properties to match and the parameters to vary.

Example:

MATCH, SEQUENCE=sequence name;
GLOBAL, Q1=26.58;//H-tune
GLOBAL, Q2=26.62;//V-tune
VARY, NAME= kqf, STEP=0.00001;
VARY, NAME = kqd, STEP=0.00001;
LMDIF, CALLS=50, TOLERANCE=1e-6;//method adopted

ENDMATCH;
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Other types of matching I

Local matching and performance matching:

Local optical functions (insertions, local optics change),

any user defined variable.

1000. 1200. 1400. 1600. 1800. 2000. 2200.
Momentum offset =    0.00 %

s (m)

s Periodic horizontal beta function

25.
30.
35.
40.
45.
50.
55.
60.
65.
70.
75.
80.
85.
90.

x
(m

)

1000. 1200. 1400. 1600. 1800. 2000. 2200.
Momentum offset =    0.00 %

s (m)

s Horizontal beta with low beta insertion

0.0

100.

200.

300.

400.

500.

600.

700.

800.

900.

x
(m

)

x

.
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Other types of matching II

Local matching and performance matching:

Local optical functions (insertions, local optics change),

any user defined variable.

Example:

MATCH, SEQUENCE=sequence name;
CONSTRAINT, range=#e, BETX=50;
CONSTRAINT, range=#e, ALFX=-2;
VARY, NAME= kqf, STEP=0.00001;

VARY, NAME = kqd, STEP=0.00001;
JACOBIAN, CALLS=50, TOLERANCE=1e-6;

ENDMATCH;
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“Hello World!” input file
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“Hello World!” output (1)
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“Hello World!” output (2)
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“Hello World!” output (3)
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“Hello World!” output (4)
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HANDS-ON EXERCISES
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Exercise I

Let us consider a FODO cell of length of L=100 m for a proton
beam of Etot = 1 GeV .
Assume thin lens approximation, quadrupoles with same focal
length in absolute value and no dipoles. Start the cell with the
focusing quadrupole (for the incoming proton beam and in the
horizontal plane) at 0 m. Put the defocusing quadrupole at 50 m.

1 Using the approach presented in the lecture, find the
quadrupole focal length to have a cell phase advance of
µx=µy=60 deg. The suggested code is Python 3 but you can
use your preferred tool.

2 With this focal length, compute in MAD-X the FODO optics
(βx ,y , αx ,y and µx ,y at s=0 m and s=50 m).

3 Using the approach presented in the lecture, write a program
to compute the βx ,y , αx ,y and µx ,y at s=0 m and s=50 m
and cross-check with MAD-X the results.
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Exercise II

4 Add a horizontal kick at the position of the focusing quad of 1
µrad and compute using your code the closed orbit at s=0.
Compare with MAD-X (use the MAD-X HKICKER element).

5 Using the approach presented in the lecture, compute and plot
the µx and the horizontal closed orbit at s=0 for range
−10−3 < ∆p/p0 < 10−3. Compare your results to MAD-X
linear chromaticity and dispersion.
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Exercise III

6 Prepare a distribution N=105 particles normal distributed and
matched to the optics of the lattice at s=0. Assume a
geometrical rms emittance, εrms , of 1 nm.

Verify, using the sigma matrix of the beam, that your
distribution is matched.
Compute the 〈JCS〉 of your distribution, and compare with εrms .
Transform your bi-Gaussian distribution in an hollow
distribution by removing all particles with JCS < 1 nm. Is the
distribution still matched? Compare the < JCS > with the new
εrms . Compute the xrms from the beam distribution and
compare it to the formula

√
βεrms .

7 Plot in the normalized space of the hollow distribution in s=0
(before the focusing quadrupole) and in s=50 m (after the
defocusing quadrupole).
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