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Summary
Phase space dynamics – fixed point analysis

Poincaré map

Motion close to a resonance

Onset of chaos

Chaos detection methods
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Phase space dynamics

- Fixed point analysis
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Phase space dynamics

 Valuable description when examining 

trajectories in phase space 

 Existence of integral of motion imposes 

geometrical constraints on phase flow

 For the simple harmonic oscillator     

phase space curves are ellipses around  

the equilibrium point parameterized by the 

Hamiltonian (energy)



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 N

o
v
e

m
b

e
r 

2
0
1

8

5

Phase space dynamics

 Valuable description when examining 

trajectories in phase space 

 Existence of integral of motion imposes 

geometrical constraints on phase flow

 For the simple harmonic oscillator     

phase space curves are ellipses around  

the equilibrium point parameterized by the 

Hamiltonian (energy)

 By simply changing the sign of the 

potential in the harmonic oscillator, the 

phase trajectories become hyperbolas, 

symmetric around the equilibrium point 

where two straight lines cross, moving 

towards and away from it
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Non-linear oscillators

 Conservative non-linear oscillators have Hamiltonian                                

with the potential being a general (polynomial) function of positions

 Equilibrium points are associated with extrema of the potential
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Non-linear oscillators

 Conservative non-linear oscillators have Hamiltonian                                

with the potential being a general (polynomial) function of positions

 Equilibrium points are associated with extrema of the potential

 Considering three non-linear oscillators

 Quartic potential (left): two minima and one maximum

 Cubic potential (center): one minimum and one maximum

 Pendulum (right): periodic minima and maxima
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Fixed point analysis

 Consider a general second order system 

 Equilibrium or “fixed” points                                            are 

determinant for topology of trajectories at their vicinity
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Fixed point analysis

 Consider a general second order system 

 Equilibrium or “fixed” points                                            are 

determinant for topology of trajectories at their vicinity

 The linearized equations of motion at their vicinity are

 Fixed point nature is revealed by eigenvalues of         , i.e. 

solutions of the characteristic polynomial  

Jacobian matrix
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Fixed point for conservative systems

 For conservative systems of 1 degree of freedom, the 

second order characteristic polynomial for any fixed point has 

two possible solutions:

 Two complex eigenvalues with opposite sign, corresponding to 

elliptic fixed points. Phase space flow is described by ellipses, with 

particles evolving clockwise or anti-clockwise

elliptic
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Fixed point for conservative systems

 For conservative systems of 1 degree of freedom, the 

second order characteristic polynomial for any fixed point has 

two possible solutions:

 Two complex eigenvalues with opposite sign, corresponding to 

elliptic fixed points. Phase space flow is described by ellipses, with 

particles evolving clockwise or anti-clockwise

 Two real eigenvalues with opposite sign, corresponding to 

hyperbolic (or saddle) fixed points. Flow described by two lines (or 

manifolds), incoming (stable) and outgoing (unstable)

elliptic
hyperbolic
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Pendulum fixed point analysis
 The “fixed” points for a pendulum can be found at 

 The Jacobian matrix is 

 The eigenvalues are
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Pendulum fixed point analysis
 The “fixed” points for a pendulum can be found at 

 The Jacobian matrix is 

 The eigenvalues are

 Two cases can be distinguished: 

 , for which

corresponding to elliptic fixed points

elliptic
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elliptic

Pendulum fixed point analysis
 The “fixed” points for a pendulum can be found at 

 The Jacobian matrix is 

 The eigenvalues are

 Two cases can be distinguished: 

 , for which

corresponding to elliptic fixed points 

 , for which

corresponding to hyperbolic fixed points

 The separatrix are the stable and unstable  

manifolds through the hyperbolic points,     

separating bounded librations and unbounded rotations

hyperbolic
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Phase space for time-dependent systems

 Consider now a simple harmonic oscillator 

where the frequency is time-dependent 

 Plotting the evolution in phase space, provides 

trajectories that intersect each other 

 The phase space has time as extra dimension
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Phase space for time-dependent systems

 Consider now a simple harmonic oscillator 

where the frequency is time-dependent 

 Plotting the evolution in phase space, provides 

trajectories that intersect each other 

 The phase space has time as extra dimension

 By rescaling the time to become and 

considering every integer interval of the new

“time” variable, the phase space looks like the 

one of the harmonic oscillator 

 This is the simplest version of a Poincaré

surface of section, which is useful for studying 

geometrically phase space of multi-dimensional 

systems
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Phase space for time-dependent systems

 Consider now a simple harmonic oscillator 

where the frequency is time-dependent 

 Plotting the evolution in phase space, provides 

trajectories that intersect each other 

 The phase space has time as extra dimension

 By rescaling the time to become and 

considering every integer interval of the new

“time” variable, the phase space looks like the 

one of the harmonic oscillator 

 This is the simplest version of a Poincaré

surface of section, which is useful for studying 

geometrically phase space of multi-dimensional 

systems

 The fixed point in the surface of section is now 

a periodic orbit
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Poincaré map
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 First recurrence or Poincaré map 

(or surface of section) is defined by the 

intersection of trajectories of a dynamical 

system, with a fixed surface in phase space

Poincaré map 
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 First recurrence or Poincaré map 

(or surface of section) is defined by the 

intersection of trajectories of a dynamical 

system, with a fixed surface in phase space

 For an autonomous Hamiltonian system 

(no explicit time dependence), it can be chosen to be 

any fixed surface in phase space, e.g.

 For a non-autonomous Hamiltonian system 

(explicit time dependence), which is periodic, it can be 

chosen as the period 

Poincaré map 
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 First recurrence or Poincaré map 

(or surface of section) is defined by the 

intersection of trajectories of a dynamical 

system, with a fixed surface in phase space

 For an autonomous Hamiltonian system 

(no explicit time dependence), it can be chosen to be 

any fixed surface in phase space, e.g.

 For a non-autonomous Hamiltonian system 

(explicit time dependence), which is periodic, it can be 

chosen as the period 

 In a system with degrees of freedom (or

including time), the phase space has           

(or ) dimensions 

 By fixing the value of the Hamiltonian to , the 

motion on a Poincaré map is reduced to           

(or )

Poincaré map 
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 Particularly useful for a system with 2 degrees of freedom, or 

1 degree of freedom + time, as the motion on Poincaré map is 

described by 2-dimensional curves

 For continuous system, numerical techniques exist to produce 

the Poincaré map exactly (e.g. M.Henon Physica D 5, 1982)

Poincaré map 
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 Particularly useful for a system with 2 degrees of freedom, or 

1 degree of freedom + time, as the motion on Poincaré map is 

described by 2-dimensional curves

 For continuous system, numerical techniques exist to 

compute the surface exactly (e.g. M.Henon Physica D 5, 1982)

 Example from Astronomy: the logarithmic galactic potential

Poincaré map 
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 Record the particle coordinates at 

one location in a ring

 Unperturbed motion lies on a circle in 

normalized coordinates (simple rotation)

Poincaré Section for a ring
Poincaré Section:

y

x

s

U

U '

f U

U '

turn

3

12



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 N

o
v
e

m
b

e
r 

2
0
1

8

25

 Record the particle coordinates at 

one location in a ring

 Unperturbed motion lies on a circle in 

normalized coordinates (simple rotation)

 Resonance condition corresponds to 

a periodic orbit or fixed points in phase 

space 

 For a non-linear kick, the radius will 

change by and the particles 

stop lying on circles

Poincaré Section for a ring

U

U '

f

Poincaré Section:

y

x

s

U

U '

2pn0

U

U '

turn

3

12
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 Simple map with single 

octupole kick with integrated 

strength       + rotation with 

phase advances  

 Restrict motion in 

plane i.e.

 Iterate for a number of 

“turns” (here 1000) 

Example: Single Octupole
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 Simple map with single 

octupole kick with integrated 

strength       + rotation with 

phase advances  

 Restrict motion in 

plane i.e.

 Iterate for a number of 

“turns” (here 1000) 

Example: Single Octupole
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 Appearance of invariant 

curves (“distorted” circles), 

where “action” is an integral of 

motion

 Resonant islands with 

stable and separatrices with 

unstable fixed points

 Chaotic motion

 Electromagnetic fields 

coming from multi-pole 

expansions (polynomials) do 

not bound phase space and 

chaotic trajectories may 

eventually escape to infinity 

(Dynamic Aperture)

 For some fields like beam-

beam and space-charge this is 

not true, i.e. chaotic motion 

leads to halo formation

Example: Single Octupole
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Motion close to a 

resonance
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Secular perturbation theory
 The vicinity of a resonance , can 

be studied through secular perturbation theory 

(see appendix)

 A canonical transformation is applied such that the 

new variables are in a frame remaining on top of the 

resonance

 If one frequency is slow, one can average the motion 

and remain only with a 1 degree of freedom 

Hamiltonian which looks like the one of the 

pendulum

 Thereby, one can find the location and nature of the 

fixed points measure the width of the resonance



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 N

o
v
e

m
b

e
r 

2
0
1

8

31

Fixed points for general multi-pole

 For any polynomial perturbation of the form the 

“resonant” Hamiltonian is written as

 With the distance to the resonance defined as  

 The non-linear shift of the tune is described by the term

 The conditions for the fixed points are

 There are fixed points for which and the 

fixed points are stable (elliptic). They are surrounded by 

ellipses

 There are also    fixed points for which and 

the fixed points are unstable (hyperbolic). The trajectories 

are hyperbolas 
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Fixed points for 3rd order resonance

 The Hamiltonian for a sextupole close to a third order 

resonance is 

 Note the absence of the non-linear tune-shift term (in this 1st

order approximation!)

 By setting the Hamilton’s equations equal to zero, three fixed 

points can be found at

 For all three points are unstable

 Close to the elliptic one at 

the motion in phase space is 

described by circles that they get 

more and more distorted to end 

up in the “triangular” separatrix

uniting the unstable fixed points 

 The tune separation from the 

resonance is 
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 Simple map with single 

sextupole kick with integrated 

strength       + rotation with 

phase advances  

 Restrict motion in 

plane i.e.

 Iterate for a number of 

“turns” (here 1000) 

Example: Single Sextupole
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 Simple map with single 

sextupole kick with integrated 

strength       + rotation with 

phase advances  

 Restrict motion in 

plane i.e.

 Iterate for a number of 

“turns” (here 1000) 

Example: Single Sextupole
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 Appearance of 3rd order 

resonance for certain phase 

advance

 … but also 4th order 

resonance

Example: Single Sextupole
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 Appearance of 3rd order 

resonance for certain phase 

advance

 … but also 4th order 

resonance 

Example: Single Sextupole
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 Appearance of 3rd order 

resonance for certain phase 

advance

 … but also 4th order 

resonance

… and 5th order resonance

Example: Single Sextupole
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 Appearance of 3rd order 

resonance for certain phase 

advance

 … but also 4th order 

resonance

… and 5th order resonance

… and 6th order and 7th

order and several higher 

orders…

Example: Single Sextupole
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Fixed points for an octupole
 The resonant Hamiltonian close to the 4th order resonance 

is written as 

 The fixed points are found by taking the derivative over the 

two variables and setting them to zero, i.e.

 The fixed points are at

 For half of them, there is a minimum in the potential as

and they are elliptic and half of them 

they are hyperbolic as
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Topology of an octupole resonance
 Regular motion near the 

center, with curves getting more 

deformed towards a rectangular 

shape 

 The separatrix passes 

through 4 unstable fixed points, 

but motion seems well contained

 Four stable fixed points 

exist and they are surrounded by 

stable motion (islands of 

stability)

 Question: Can the central 

fixed point become hyperbolic

(answer in the appendix)

SFP

UFP
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Octupole with hyperbolic central fixed point

 Now, if the solution for the action is

 So there is no minima in the potential, i.e. the central fixed 

point is hyperbolic
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 As for the sextupole, the octupole 

can excite any resonance

 Multi-pole magnets can excite any 

resonance order

 It depends on the tunes, strength

of the magnet and particle 

amplitudes

Single Octupole
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 Adding a sextupole and an 

octupole increases the chaotic 

motion region, when close to the 4th

order resonance

Single Octupole + Sextupole
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 Adding a sextupole and an 

octupole increases the chaotic 

motion region, when close to the 4th

order resonance

 But also allows the appearance of 

3rd order resonance stable fixed 

points

Single Octupole + Sextupole
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Onset of chaos
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Path to chaos
When perturbation becomes higher, motion around the 

separatrix becomes chaotic (producing tongues or 

splitting of the separatrix)

 Unstable fixed points are indeed the source of chaos 

when a perturbation is added
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Chaotic motion
 Poincare-Birkhoff theorem states that under 

perturbation of a resonance only an even 

number of fixed points survives (half stable 

and the other half unstable)

 Themselves get destroyed when perturbation 

gets higher, etc. (self-similar fixed points)

 Resonance islands grow and resonances

can overlap allowing diffusion of particles



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 N

o
v
e

m
b

e
r 

2
0
1

8

48

Resonance overlap criterion
 When perturbation grows, the resonance island width grows

 Chirikov (1960, 1979) proposed a criterion for the overlap of two 

neighboring resonances and the onset of orbit diffusion

 The distance between two resonances is

 The simple overlap criterion is
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Resonance overlap criterion
 When perturbation grows, the resonance island width grows

 Chirikov (1960, 1979) proposed a criterion for the overlap of two 

neighboring resonances and the onset of orbit diffusion

 The distance between two resonances is

 The simple overlap criterion is

 Considering the width of chaotic layer and secondary islands, the “two 

thirds” rule apply

 Example: Chirikov’s standard map
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Resonance overlap criterion
 When perturbation grows, the resonance island width grows

 Chirikov (1960, 1979) proposed a criterion for the overlap of two 

neighboring resonances and the onset of orbit diffusion

 The distance between two resonances is

 The simple overlap criterion is

 Considering the width of chaotic layer and secondary islands, the “two 

thirds” rule apply

 The main limitation is the geometrical nature of the criterion (difficulty

to be extended for > 2 degrees of freedom)
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Increasing dimensions
 For , i.e. by adding another 

degree of freedom chaotic motion is enhanced



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 N

o
v
e

m
b

e
r 

2
0
1

8

52

Increasing dimensions
 For , i.e. by adding another 

degree of freedom chaotic motion is enhanced

 At the same time, analysis of phase space on 

surface of section becomes difficult to interpret, as 

these are projections of 4D objects on a 2D plane
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Chaos detection methods
 Computing/measuring dynamic aperture (DA) or 

particle survival

 Computation of Lyapunov exponents

 Variance of unperturbed action (a la Chirikov)

 Fokker-Planck diffusion coefficient in actions

 Frequency map analysis

A. Chao et al., PRL 61, 24, 2752, 1988;

F. Willeke, PAC95, 24, 109, 1989.

F. Schmidt, F. Willeke and F. Zimmermann, PA, 35, 249, 1991;

M. Giovannozi, W. Scandale and E. Todesco, PA 56, 195, 1997

B. Chirikov, J. Ford and F. Vivaldi, AIP CP-57, 323, 1979 

J. Tennyson, SSC-155, 1988;

J. Irwin, SSC-233, 1989

T. Sen and J.A. Elisson, PRL 77, 1051, 1996
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Appendix
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The pendulum

 An important non-linear equation which can be 

integrated is the one of the pendulum, for a string of 

length L and gravitational constant g

 For small displacements it reduces to an harmonic 

oscillator with frequency

 The integral of motion (scaled energy) is

and the quadrature is written as
assuming that for
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Solution for the pendulum

 Using the substitutions with

, the integral is 

and can be solved using 

Jacobi elliptic functions:

 For recovering the period, the integration is 

performed between the two extrema, i.e.               

and , corresponding to

and          
, for which

i.e. the complete elliptic integral multiplied by four 

times the period of the harmonic oscillator
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Secular perturbation theory
 Consider a general two degrees of freedom Hamiltonian:

with the perturbed part periodic in angles:

 The resonance prevents the 

convergence of the series
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Secular perturbation theory
 Consider a general two degrees of freedom Hamiltonian:

with the perturbed part periodic in angles:

 The resonance prevents the 

convergence of the series

 A canonical transformation can be applied  for eliminating 

one action: using the generating function 

 The relationships between new and old variables are

 This transformation put the system in a rotating frame, 

where the rate of change measures 

the deviation from resonance 
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Secular perturbation theory
 The transformed Hamiltonian is

with the perturbation written as
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Secular perturbation theory
 The transformed Hamiltonian is

with the perturbation written as

 This transformation assumes that is the slow 

frequency and the Hamiltonian can be averaged over the 

corresponding angle to obtain 

with and 
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Secular perturbation theory
 The transformed Hamiltonian is

with the perturbation written as

 This transformation assumes that is the slow 

frequency and the Hamiltonian can be averaged over the 

corresponding angle to obtain 

with and 

 The averaging eliminated one angle and thus                     

is an invariant of motion

 This means that the Hamiltonian has effectively only one 

degree of freedom and it is integrable
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Secular perturbation theory

 Assuming that the dominant Fourier harmonics for        

the Hamiltonian is written as

 Fixed points (i.e. periodic orbits) in phase 

space                        are defined by
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Secular perturbation theory

 Assuming that the dominant Fourier harmonics for        

the Hamiltonian is written as

 Fixed points (i.e. periodic orbits) in phase 

space                        are defined by

 Introduce moving reference on fixed point 

and expand             around it 

 Hamiltonian describing motion near a resonance:
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Secular perturbation theory

 Assuming that the dominant Fourier harmonics for        

the Hamiltonian is written as

 Fixed points (i.e. periodic orbits) in phase 

space                        are defined by

 Introduce moving reference on fixed point 

and expand             around it 

 Hamiltonian describing motion near a resonance:

 Motion near a typical resonance is like the one of the 

pendulum!!! The libration frequency and the resonance 

half width are
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Single resonance for accelerator Hamiltonian

 The single resonance accelerator Hamiltonian 

(Hagedorn (1957), Schoch (1957), Guignard (1976, 

1978)) 

with 
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Single resonance for accelerator Hamiltonian

 The single resonance accelerator Hamiltonian 

(Hagedorn (1957), Schoch (1957), Guignard (1976, 

1978)) 

with 

 From the generating function   

the relationships between old and new variables are                                                 

 The following Hamiltonian is obtained
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Resonance widths
 There are two integrals of motion 

 The Hamiltonian, as it is independent on “time”

 The new action as the Hamiltonian is independent on

 The two invariants in the old variables are written as:
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Resonance widths
 There are two integrals of motion 

 The Hamiltonian, as it is independent on “time”

 The new action as the Hamiltonian is independent on

 The two invariants in the old variables are written as:

 Two cases can be distinguished

 have opposite sign, i.e. difference resonance, the motion is 

the one of an ellipse, so bounded

 have the same sign, i.e. sum resonance, the motion is the 

one of an hyperbola, so not bounded

 These are first order perturbation theory considerations

 The distance from the resonance is obtained as


