Linear Theory

a=exp(A-V)I. (3.28)

The map I is the identity map of phase space: it is made of two trivial projection
functions in 1-d-f, in other words

) , (3.29)

If the vector field A 1s symplectic (or Hamiltonian), it means that a Hamiltonian H,
can achieve the same result:

_9H: 0 dHa 9 —H,:. (3.30)
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[t can be shown easily, in the Hamiltonian case, that Eq. (3.26) can be written as:

K" =Koa=exp(: Hy:)K. (3.31)
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Ais also assumed to have det(A)=1.
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Lattice Functions (linear only)
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2.2.4 Lattice functions as coefficients of the moments (z,-z j

Here let us use the matrix A directly and compute the three quadratic moments of
the 1-d-f linear theory.

(@) = ((And™ +And™)?) = 4% (Z92) +ah (372) + 24040 ([ E™)

2
_ (3 +4) 0 CER
B

In Eq. (2.34), if we are dealing with a single particle and performing a time
average, then the average can be removed in the final expression. In Eq. (2.34) I use
the fact that that z{*" and i move on circles and thus the value a’f*’“"z - ag*"’*’z is
constant on a trajectory. Other averages can be computed as well:
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and more interestingly,

(z122) = (A ™ + A0 ) (An 17 + Ana™)
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M = cos(u)H +sin(u)B (3.1)

where

H— (] U) and B=(“ B)withB2=—H
0 1 -y —d

Using this formula, which is a representation of the unit complex numbers, we immediately
see that

M"Y = cos(Nu)H +sin(Nu)B (3.2)

Eq. (B2) is the famous de Moivre formula known to accelerator physicists. The notation H ( as
in capital n), for what appears to be the identity, anticipates the results in more than 1-d-f. We
will see that in 3-d-f, the matrix H is not the identity but corresponds to generalised dispersions of
reference [H].

The matrix B ( as in beta functions) contains the regular lattice functions as defined by Ripken.
In fact we have the following results:

B = SK (3.3)
B =ES (3.4)
K = SEST (3.5)

0 1
whereSz(_l 0)



The matrix K of Eq. (B.3)) defines the Courant-Snyder invariant

K=(; g) — £(z) = 7' Kz= 11 +2az122+ Bz (3.6)

The matrix E of Eq. (3.4) gives us the quadratic moments:

E— (_’B{x ) ) (zizj) =E <#> =Ei;j {J)

for example (z7) = B ({J) (3.7)

Finally, the one-turn map M can be written with a single exponent and we will see that all the
results of this section can be extended to many dimensions.

M = exp(uB) =exp(uSK) (3.8)

From Eq. (B.8) one can derive two interesting corollaries. Firstly the invariant of Eq. (B.6), the so
called Courant-Snyder invariant, is a pseudo-Hamiltonian for the matrix M. The Hamiltonian ¢,

H = {Lf Kz (3.9)



4. De Moivre’s formula in many degrees of freedom

The derivation of this formula only requires the existence of a normal form. We might as well
do it in the non-symplectic case. In 3-d-f, when classical radiation is present, the map M can be
factorised as

M = AARA™! (4.1)
00 COS L;  SIn L

R=|0 rn 0 r,-=( Sin‘”‘_ ms‘uf)
0 0 r Hi €05 H
Al 0 0

A=|0 A 0 ﬁ,—:(ﬂp(_”") 0 ) 4.2)
0 0 As 0 exp(—oy)

31t was reported to me by Frank Schmidt of CERN, that Dr. Ripken referred to the dispersion-like lattice functions
of reference [B] as “the only thing in linear Hamiltonian perturbation theory™ he had been unaware. 1 surmise that he
would have like the cute result of this paper— that his theory contained an exact form of Sands’ approximate methods.



Applying Eq. (B3) to Eq. (B.1)) we get

M=A (Ze—ﬂf {cos () I' +sin(ui-}SP}) A (4.3)
=Y e % ¢ cos (i) AI'A" +sin (u;) ASI'A™ (4.4)
i Hi R

where I’ is the identity only in the i plane. For example,

IF = (4.5)
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[t is easy to show that the matrices H' and B' form three independent representations of the complex
numbers 1 and i:

H'H! = §;;H’ (4.6)
H'B’ = B'H' = §;;B’ (4.7)
B'B = —§;;H’ (4.8)



De Moivre’s general formula follows from the three previous equations.

MY =Y e¥% {cos (Ny;)H' +sin(Nu;) B'} (4.9)
I

Moreover, we can again rewrite the map M in terms of a single exponent:
M = exp (Z —a;H' +JLL,-B‘) — exp (Z —oH" +;1E-Sﬁ'f) (4.10)
i i

There are a few comments we need to make concerning the results of this section.

I. As shown by Eq. (A10), the lattice functions H' cannot be removed easily from any treatment
of a non-symplectic system. Of course, using Eq. (B.8), we can replace them by quadratic
polynomials in the B'’s.

2. Forest, in [H], has shown that analytical tune shift formulas for an arbitrary force depend on
the B"’s while the damping shifts depend on the H'’s.

3. In a symplectic system, if perturbation theory is done on the Hamiltonian, the lattice func-
tions H' will not naturally appear since the exponent in Eq. (310) only depends of the B'’s
(when the damping is zero). This is why they never appear in Ripken’s extensive literature
on the subject.



5.2 Other Useful Properties

Properties equivalent those of Eqs. (B3), (B.4) and (B.3) can be proved in the multidimensional
case:

B' = SK' (5.11)
B = E'S (5.12)
K' = SE'ST (5.13)

For example, the pseudo-Hamiltonian which generates the matrix M is in the sum of the three
invariants weighted by the tunes:

=Y BTk = ¥ By (5.14)
=13 2 =13 2
&(z) = z'K'z  +  Coupled Courant — Snyder Invariants (5.15)

As for the quadratic moments, they are given by E:
(za2s) = ). Eap (i) (5.16)
i=1,3

There are many more interesting corollaries but that would take our story into an unwanted tangent.

Let us return to our main discovery: the strange and unexpected equivalence between Sands and
Chao.



Possible A: select A,,.>0 and A,,=0




A In terms of lattice functions
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Evolution of invariant (nonlinear OK)

H 5 Pt Hya(s)xp
Hi1 = k(s) = Focusing quadrupole strength
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If the Hamiltonian is the usual one :
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Nonlinear works

dl

— =[H.L]. (2.94)

With Maps: In general, consider a quantity I, which is invariant
under M.:

L= M.I
v q4—1 1
,-'\/15_!’5_'_3_{ Mb—‘b+.l‘. IVI ME_"E"‘—\ ME—*&-I—.AI
.\—\I_lr
Motas
lon=M, L. (2.95)

In Equation (2.95). the time shift A can be finite. The result of
Equation (2.94) is gotten by replacing A by ds.



Writing R. ;145 as exp(—du : J ;). we then compute the map A.. 4.
to first order in ds:

exp(—du : J 1) = A et H: AS ds

I}
1'12 / AS—I_{ES _ AS B dSAS . H . _i_dllu . J ' AS' (2-99}

@ Up to this point, we have not used the fact that we interested in the

Courant-Snyder transformation. This transformation is characterized
by the vanishing A, entry of its assoclated transfer map. To get
this entry, we act on the function “z” with A.. 4. and we require the
coefficient of the function “p” to be zero:
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Must be zero for
the Courant—S2nyder Functional

+ =2 (2.100)
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Why Courant-Snyder choice?

21 {ﬂ) = ﬂ-f.[uﬂ-{alzu {0)
= ﬂ]Rmf‘lD_lﬂ[]REﬂD_lzD {:D)
= f‘l]RmREﬂEIED {0)
= AjAy" Ao Ror Ry Ay lJ 2 (0) (4.14)

De Moi vr; applicable

We can apply the result of Sec. (3.4.1) to re-express Eq. (4.14) as a function
of the lattice functions at s = 0:

() — _y [ cos (D7) + apsin (D7) Po sin (®7,) ) 0 -
2 (n) = Aidy ( —o sin (®4) cos ($¢) — agsin (¥¢) / ~ (4.15)
\/% U cos (D) + oy sin (D) [ sin (D) .
— | (o) \/E i (B (B ey |
5 A, — 7o sin (D) cos (®¢) — agsin (D7)
where ®° = np + pg,  here pg, results from Eq. (4.12)

The final is step is simply to write the position g at s = 1:

By
¢'(n) = V“’J—; ({cos{@i) + agsin (®)) go + Fosin (@i}p(}) (4.16)

Extends to coupled system if A =0 and A,,=0
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