# My goal for this school <br> Promoting a hierarchical framework 

## Étienne Forest ${ }^{1,2}$

${ }^{1}$ High Energy Research Accelerator Organization Tsukuba, Japan<br>${ }^{2}$ Department of Accelerator Science Graduate University for Advanced Studies, Hayama, Japan

December 2017

## Warning

Listen to this presentation as if you are going to the doctor.

The doctor

- Explains the various options
- Explains how the are tied to one another
- Explains in what order they come if needed
- Tells you the cost (the amount of work each option entails)

Then, later, in the practical section, the doctor (that is me!) can go over each option with full examples in hand.

## Outline

(1) Primacy of the Tracking Code
(2) The hierarchical loop

## The ring and the code

A tracking code allows to compute an arbitrary trajectory around the machine: the blue curve for example


We assume the existence and the necessicity of such a code: MAD-X for example.

## Generalised Courant-Snyder Theory



## One-resonance theory



$$
m=a \circ n \circ a^{-1}
$$

$$
n=r\left(\frac{-1}{4}\right) \circ n_{\epsilon}
$$

$H=\log \left(n_{\epsilon}\right)$

## Little experiment: an octupole component in OCT b4=500.0 in PTC units

```
MAD-X LATTICE
L : drift, L= 0.2;
alpha=pi/10
QF : SBEND,L= 1.0, ANGLE=ALPHA,k1=1.0;
QD : SBEND,L= 1.0, ANGLE=ALPHA,k1=-1.0;
Oct : octupole, K3= 0.0;
lattice : LINE= (QF, Oct,L,QD,Oct,L);
```


## How can we compute the yellow curve?

(1) Analyse an approximate representation of the one-turn map and propagate the analysis around the ring using the code.
(2) Compute the effect of the octupole using Green's function methods
(3) Concoct a smooth Hamiltonian (equation of motion) representing the entire ring and do the following: compute the effect of the octupole using Fourier transform methods on the smooth Hamiltonian.

What are the problems with each method?

## How can we compute the yellow curve?

## Solution: TPSA!

(1) Analyse an approximate representation of the one-turn map and propagate the analysis around the ring using the code.
2 Compute the effect of the octupole using Green's function methods
(3) Concoct a smooth Hamiltonian (equation of motion) representing the entire ring and do the following: compute the effect of the octupole using Fourier transform methods on the smooth Hamiltonian.

What are the problems with each method?

## Example of Analytical results

## Effect of Octupoles



Approximate one-turn maps

## Example of Analytical results

## Efiect of Octupoles



## MAD-X LATTICE

L : drift, L= 0.2;
alpha= pi/10
QF : SBEND,L= 1.0, ANGLE=ALPHA,k1=1.0;
QD : SBEND,L= 1.0, ANGLE=ALPHA,k1=-1.0;
Oct : octupole, K2= 0.0;
lattice : LINE= (QF,Oct,L,QD,Oct,L);

## Example of Analytical results

## Efiect of Octupoles

$$
H=\underbrace{\frac{p^{2}}{2}+k_{Q}(s) \frac{x^{2}}{2}}_{H_{0}}+\frac{1}{4} k_{0} \delta\left(s-s_{0}\right) x^{4}
$$


$\Delta \varepsilon=2 i\left\{h \frac{\partial F}{\partial h}-\bar{h} \frac{\partial F}{\partial \bar{h}}\right\} \circ A^{-1}$ where $h=x+i p_{x}$ and $A^{-1}$ is the Courant-Snyder transformation. Approximate one-turn maps

## MAD-X LATTICE

L : drift, L= 0.2;
alpha= pi/10
QF : SBEND,L= 1.0, ANGLE=ALPHA,k1=1.0;
QD : SBEND,L= 1.0, ANGLE=ALPHA,k1=-1.0;
Oct : octupole, K2= 0.0;
lattice : LINE= (QF,Oct,L,QD,Oct,L);

$$
F=F_{4} h^{4}+F_{31} h^{3} \bar{h}+C . C .
$$

## Example of Analytical results

## Efiect of Octupoles

$H=\underbrace{\frac{p^{2}}{2}+k_{Q}(s) \frac{x^{2}}{2}}_{H_{0}}+\frac{1}{4} k_{o} \delta\left(s-s_{0}\right) x^{4}$

$\Delta \varepsilon=2 i\left\{h \frac{\partial F}{\partial h}-\bar{h} \frac{\partial F}{\partial \bar{h}}\right\} \circ A^{-1}$ where $h=x+i p_{x}$ and $A^{-1}$ is

## MAD-X LATTICE

L : drift, L= 0.2;
alpha= pi/10
QF : SBEND,L= 1.0, ANGLE=ALPHA,k1=1.0;
QD : SBEND,L= 1.0, ANGLE=ALPHA,k1=-1.0;
Oct : octupole, K2= 0.0;
lattice : LINE= (QF,Oct,L,QD,Oct,L);

TPSA results

## Example of Analytical results

## Efiect of Octupoles



The Code

Tracking

## MAD-X LATTICE

L : drift, L= 0.2;
alpha= pi/10
QF : SBEND,L= 1.0, ANGLE=ALPHA,k1=1.0;
QD : SBEND,L= 1.0, ANGLE=ALPHA,k1=-1.0; Oct : octupole, K2=0.0;
lattice : LINE= (QF,Oct,L,QD,Oct,L);

## Equivalent to Green's Function

 analytical perturbation theory on equation of motions.$$
\begin{aligned}
F= & \frac{k_{0} \beta_{0}^{2}}{64}\left\{\frac{e^{-i 4 \mu_{0}}}{1-e^{-i 4 \mu}} h^{4}\right. \\
& \left.+\frac{e^{-i 2 \mu_{0}}}{1-e^{-i 2 \mu}} 4 h^{3} \bar{h}+C C\right\}
\end{aligned}
$$

TPSA results

$$
F=F_{4} h^{4}+F_{31} h^{3} \bar{h}+C . C .
$$

(4.922331235935857E-2,-4.067886707780190E-2)

$$
(0.100630505489161,-0.213709467914908)
$$

## Example of Analytical results

## Efiect of Octupoles

$$
H=\underbrace{\frac{p^{2}}{2}+k_{Q}(s) \frac{x^{2}}{2}}_{H_{0}}+\frac{1}{4} k_{0} \delta\left(s-s_{0}\right) x^{4}
$$

Lattice

Fourier Transform analytical perturbation theory on equation of motions.

$$
\begin{aligned}
F= & \frac{k_{0} \beta_{0}^{2}}{16} \sum_{k=-\infty,+\infty}\left\{\frac{i e^{-i k 2 \pi \frac{\mu_{0} s_{0}}{\mu}}}{8(k-4 \nu) \pi} h^{4}\right. \\
& \left.+\frac{i e^{-i k 2 \pi} \frac{\mu_{0 s_{0}}}{\mu(k-2 \nu) \pi}}{8} h^{3} \bar{h}+C C\right\}
\end{aligned}
$$

$\Delta \varepsilon=2 i\left\{h \frac{\partial F}{\partial h}-\bar{h} \frac{\partial F}{\partial \bar{h}}\right\} \circ A^{-1}$
where $h=x+i p_{x}$ and $A^{-1}$ is

## MAD-X LATTICE

L : drift, L= 0.2;
alpha= pi/10
QF : SBEND,L= 1.0, ANGLE=ALPHA,k1=1.0;
QD : SBEND,L= 1.0, ANGLE=ALPHA,k1=-1.0; Oct : octupole, K2= 0.0;
lattice : LINE= (QF,Oct,L,QD,Oct,L);

## Equivalent to Green's Function

 analytical perturbation theory on equation of motions.$$
\begin{aligned}
F= & \frac{k_{0} \beta_{0}^{2}}{64}\left\{\frac{e^{-i 4 \mu_{0 s_{0}}}}{1-e^{-i 4 \mu}} h^{4}\right. \\
& \left.+\frac{e^{-i 2 \mu_{0}}}{1-e^{-i 2 \mu}} 4 h^{3} \bar{h}+C C\right\}
\end{aligned}
$$

TPSA results

$$
F=F_{4} h^{4}+F_{31} h^{3} \bar{h}+C . C .
$$

(4.922331235935857E-2,-4.067886707780190E-2)
(0.100630505489161,-0.213709467914908)
the Courant-Snyder transformation.

## Results of the 3 calculations

Fourier mode results with
10 terms (4.782974390204826E-002,-4.059056134368263E-002) (9.507535496091109E-002,-0.213533381429028)

Green function results
(4.922331235935828E-002,-4.067886707780208E-002)
(0.100630505489162,-0.213709467914905)

TPSA results
(4.922331235935857E-002,-4.067886707780190E-002)
(0.100630505489161,-0.213709467914908)

## Some details of Fourier methods

$$
H=\underbrace{\frac{p^{2}}{2}+k_{Q}(s) \frac{x^{2}}{2}}_{H_{0}}+\frac{1}{4} k_{0} \delta\left(s-s_{0}\right) x^{4}
$$

$\Downarrow$

$$
\begin{aligned}
& H=\omega_{s} J+\beta_{s}^{2} k_{o}(s) \frac{x^{4}}{4} \\
& \quad \Downarrow \\
& K=\nu J+\frac{\nu}{\omega_{s}} \beta_{\theta}^{2} k_{o}(\theta) \frac{x^{4}}{4} \quad \text { where } \theta \nu=\int_{0}^{s} \omega_{\sigma} d \sigma \quad \text { and } \quad J=\frac{1}{2}\left(x^{2}+p^{2}\right) \\
& \frac{\nu \beta_{\theta}^{2} k_{o}(\theta)}{4 \omega_{s}}=\sum_{k=-\infty, \infty} V_{k} e^{i k \theta} \quad \text { where } \quad V_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\nu \beta_{\theta^{\prime}}^{2} k_{o}\left(\theta^{\prime}\right)}{4 \omega_{s}} e^{-i k \theta^{\prime}} d \theta^{\prime} \\
& H
\end{aligned}
$$

## Some details of Fourier methods

$$
\begin{aligned}
& H=\underbrace{\frac{p^{2}}{2}+k_{Q}(s) \frac{x^{2}}{2}}_{H_{0}}+\frac{1}{4} k_{0} \delta\left(s-s_{0}\right) x^{4} \quad \Longleftarrow \text { TPSA: take the log of the step of integration } \\
& \Downarrow \\
& H=\omega_{s} J+\beta_{s}^{2} k_{0}(s) \frac{x^{4}}{4} \\
& \Downarrow \\
& K=\nu J+\frac{\nu}{\omega_{s}} \beta_{\theta}^{2} k_{0}(\theta) \frac{x^{4}}{4} \quad \text { where } \theta \nu=\int_{0}^{s} \omega_{\sigma} d \sigma \quad \text { and } \quad J=\frac{1}{2}\left(x^{2}+p^{2}\right) \\
& \frac{\nu \beta_{\theta}^{2} k_{0}(\theta)}{4 \omega_{s}}=\sum_{k=-\infty, \infty}^{V_{k} e^{i k \theta} \quad \text { where } \quad V_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\nu \beta_{\theta^{\prime}}^{2} k_{o}\left(\theta^{\prime}\right)}{4 \omega_{s}} e^{-i k \theta^{\prime}} d \theta^{\prime}} \\
& H=\nu J+\sum_{k=-\infty, \infty} V_{k} e^{i k \theta} x^{4}
\end{aligned}
$$

## Some details of Fourier methods

$$
\begin{aligned}
& H=\underbrace{\frac{p^{2}}{2}+k_{Q}(s) \frac{x^{2}}{2}}_{H_{0}}+\frac{1}{4} k_{o} \delta\left(s-s_{0}\right) x^{4} \quad \Longleftarrow \text { TPSA: take the log of the step of integration } \\
& \Downarrow \\
& H=\omega_{s} J+\beta_{s}^{2} k_{o}(s) \frac{x^{4}}{4} \quad \Longleftarrow \text { TPSA: Do a linear Twiss loop to get the transformed Hamilt } \\
& \Downarrow \\
& K=\nu J+\frac{\nu}{\omega_{s}} \beta_{\theta}^{2} k_{0}(\theta) \frac{x^{4}}{4} \quad \text { where } \theta \nu=\int_{0}^{s} \omega_{\sigma} d \sigma \quad \text { and } \quad J=\frac{1}{2}\left(x^{2}+p^{2}\right) \\
& \frac{\nu \beta_{\theta}^{2} k_{0}(\theta)}{4 \omega_{s}}=\sum_{k=-\infty, \infty}^{V_{k} e^{i k \theta} \quad \text { where } \quad V_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\nu \beta_{\theta^{\prime}}^{2} k_{o}\left(\theta^{\prime}\right)}{4 \omega_{s}} e^{-i k \theta^{\prime}} d \theta^{\prime}} \\
& H=\nu J+\sum_{k=-\infty, \infty} V_{k} e^{i k \theta} x^{4}
\end{aligned}
$$

## Some details of Fourier methods

$$
\begin{gathered}
H=\underbrace{\frac{p^{2}}{2}+k_{Q}(s) \frac{x^{2}}{2}}_{H_{0}}+\frac{1}{4} k_{o} \delta\left(s-s_{0}\right) x^{4} \quad \Longleftarrow \text { TPSA: take the log of the step of integration } \\
\Downarrow \\
H=\omega_{s} J+\beta_{s}^{2} k_{0}(s) \frac{x^{4}}{4} \quad \Longleftarrow \text { TPSA: Do a linear Twiss loop to get the transformed Hamiltonian } \\
\Downarrow \\
K=\nu J+\frac{\nu}{\omega_{s}} \beta_{\theta}^{2} k_{0}(\theta) \frac{x^{4}}{4} \quad \text { where } \theta \nu=\int_{0}^{s} \omega_{\sigma} d \sigma \quad \text { and } J=\frac{1}{2}\left(x^{2}+p^{2}\right) \\
\frac{\nu \beta_{\theta}^{2} k_{0}(\theta)}{4 \omega_{s}}=\sum_{k=-\infty, \infty}^{V_{k} e^{i k \theta} \quad \text { where } \quad V_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\nu \beta_{\theta^{\prime}}^{2} k_{0}\left(\theta^{\prime}\right)}{4 \omega_{s}} e^{-i k \theta^{\prime}} d \theta^{\prime}} \\
H=\nu J+\sum_{k=-\infty, \infty} V_{k} e^{i k \theta} x^{4} \quad \Longleftarrow \text { Thus TPSA is essential on a realistic lattice } \\
\text { to get to this point! }
\end{gathered}
$$

## My hierarchical view of accelerators

It respects the ubiquitous primacy of tracking codes

## Fourier Transform

analytical perturbation theory on equation of motions.


## My hierarchical view of accelerators

It respects the ubiquitous primacy of tracking codes

## Fourier Transform

analytical perturbation theory on equation of motions.


## My hierarchical view of accelerators

It respects the ubiquitous primacy of tracking codes

## Fourier Transform

analytical perturbation theory on equation of motions.


## My hierarchical view of accelerators

It respects the ubiquitous primacy of tracking codes

## Fourier Transform

analytical perturbation theory on equation of motions.


## My hierarchical view of accelerators

It respects the ubiquitous primacy of tracking codes

## Fourier Transform

analytical perturbation theory on equation of motions.


## My hierarchical view of accelerators

It respects the ubiquitous primacy of tracking codes

## Fourier Transform

analytical perturbation theory on equation of motions.


## My hierarchical view of accelerators

It respects the ubiquitous primacy of tracking codes

## Fourier Transform

analytical perturbation theory on equation of motions.


## What can be fed through that loop?

Consider the following list of topics:

- Courant-Snyder theory (linear phase advance, lattice functions, beam sizes)
- Coupled orbital linear theory (linear phase advance, lattice functions, beam sizes)
- Damped system with radiation (linear phase advance, lattice functions, beam sizes)
- Spin theory: (linear phase advance, lattice functions)
- Include magnet strength modulations
- Nonlinear versions of the above

Search the literature and you will likely find a series of unrelated methods

## More stuff: resonances

Consider the following list of topics:

- One-dimensional phase space resonances
- Coupled phase space resonances
- Spin resonances in accelerators
- Limit cycles in electric circuits
- Track the above through the lattice

Search the literature and you will likely find a series of unrelated methods

