

Direct Vlasov solvers – part II

Nicolas Mounet, CERN/BE-ABP-HSC

Acknowledgements: Sergey Arsenyev, Xavier Buffat, Giovanni Iadarola, Kevin Li, Elias Métral, Adrian Oeftiger, Giovanni Rumolo

Direct Vlasov solvers

Part I

- \triangleright Introduction: collective effects
- \triangleright Motivation for Vlasov solvers
- \triangleright Vlasov equation historically, and in the context of accelerators
- \triangleright Transverse impedance and instabilities
- \triangleright Building of a simple Vlasov solver for impedance instabilities Part II
- \triangleright Compact way to present the theory: Hamiltonians & Poisson brackets
- \triangleright Upgrade of part I theory to obtain Sacherer integral equation
- \triangleright Solving Sacherer equation convergence
- \triangleright Benchmarks & examples of application of Vlasov solvers

Introducing Hamiltonians

 \triangleright Some of the analytical work shown in part I can be made simpler by using Hamiltonians: the (conservative) system under study is governed by the Hamiltonian

$$
H(x, x', y, y', z, \delta; t)
$$

 \triangleright Coordinates and momenta go in pair, and obey Hamilton's equations: for example in the vertical plane

$$
\frac{dy}{dt} = \frac{\partial H}{\partial y'} \quad \text{and} \quad \frac{dy'}{dt} = -\frac{\partial H}{\partial y}
$$

- \triangleright This does not introduce any additional physics, it just makes part of the derivation easier, more efficient and more elegant.
- \triangleright For more details on Hamiltonians, see W. Herr's lecture in this CAS (14/11): https://indico.cern.ch/event/759124/contributions/3148186/attachments/1748350/2838297/ham1.pdf

 $\mathbb C$ FRI

Vlasov equation with Hamiltonians **CERN**

 \triangleright Going back to our simple Vlasov solver in 2D:

$$
\frac{d\psi}{dt} = \frac{\partial \psi}{\partial t} + \frac{\partial \psi}{\partial y} \frac{dy}{dt} + \frac{\partial \psi}{\partial y'} \frac{dy'}{dt}
$$
\n
$$
= \frac{\partial \psi}{\partial t} + \frac{\partial \psi}{\partial y} \frac{\partial H}{\partial y'} - \frac{\partial \psi}{\partial y'} \frac{\partial H}{\partial y'}
$$
\nThis is simply $[\psi, H]$:

\nThis is simply $[\psi, H]$:

\n
$$
\text{P}_i = \text{momenta}
$$
\n
$$
[f, g] = \sum_i \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial y_i} - \frac{\partial f}{\partial y_i} \frac{\partial g}{\partial x_i}
$$
\n
$$
\text{Vlasov equation } \frac{d\psi}{dt} = 0 \text{ then becomes } \text{(see W. Herr's CAS lecture on 14/11/2018)}
$$
\n
$$
\frac{\partial \psi}{\partial t} + [\psi, H] = 0
$$
\n...

\nand this is completely general.

Perturbation

 \triangleright In any Vlasov solver using perturbation theory we look for a distribution function of the form

Stationary distribution for the Hamiltonian without impedance.

Perturbation of the stationary distribution, of first order

 $\triangleright \psi$ is the solution of the perturbed Hamiltonian

 $H = (H_0) + (\Delta H)$

Unperturbed Hamiltonian

First order perturbation of the Hamiltonian, here from impedance.

Linearized Vlasov equation using Poisson brackets

$$
\frac{\partial \psi}{\partial t} + [\psi, H] = 0
$$
\n
$$
\Leftrightarrow \frac{\partial (\psi_0 + \Delta \psi)}{\partial t} + [\psi_0 + \Delta \psi, H_0 + \Delta H] = 0
$$
\n
$$
\Leftrightarrow \frac{\partial \psi_0}{\partial t} + [\phi_0, H_0] + [\psi_0, \Delta H] + [\Delta \psi, H_0] + [\psi_0, \Delta H] + [\Delta \psi, H_0] = 0
$$
\n=0 since ψ_0 is solution of
\nVlasov eq. for H_0
\n
$$
\text{Isn't that exactly what we did - somewhat more painful} - during part I?\n \Leftrightarrow \frac{\left(\frac{\partial \Delta \psi}{\partial t} + \left(\frac{\partial \psi_0}{\partial y} \frac{\partial \psi_0}{\partial y'} = 0
$$

$$
\frac{\partial \Delta \psi}{\partial t} + [\Delta \psi, H_0] + [\psi_0, \Delta H] = 0
$$

- \triangleright This is completely general for any Hamiltonian system within linear perturbation theory, up to the first order in the perturbation.
- \triangleright Poisson brackets are conserved within any canonical transformation of coordinates $(x_i, p_i) \rightarrow (X_i, P_i)$, i.e. any transformation for which there is:
	- preservation of Hamilton's equations,
	- **•** equivalently, symplecticity of the Jacobian $J : \mathbf{U}^T \cdot S \cdot J = S$

with
$$
\mathcal{J} = \begin{pmatrix} \frac{\partial x_1}{\partial x_1} & \cdots & \frac{\partial x_1}{\partial x_n} & \frac{\partial x_1}{\partial p_1} & \cdots & \frac{\partial x_n}{\partial p_n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial x_1} & \cdots & \frac{\partial x_n}{\partial x_n} & \frac{\partial x_n}{\partial p_1} & \cdots & \frac{\partial x_n}{\partial p_n} \\ \frac{\partial P_1}{\partial x_1} & \cdots & \frac{\partial P_1}{\partial x_n} & \frac{\partial P_1}{\partial p_1} & \cdots & \frac{\partial P_1}{\partial p_n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial P_n}{\partial x_1} & \cdots & \frac{\partial P_n}{\partial x_n} & \frac{\partial P_n}{\partial p_1} & \cdots & \frac{\partial P_n}{\partial p_n} \end{pmatrix}, S = \begin{pmatrix} 0 & \cdots & 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 1 \\ -1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -1 & 0 & \cdots & 0 \end{pmatrix}
$$

■ Note that symplecticity entails $\det(\mathcal{J}) = 1 \longrightarrow \iint dX_i dP_i = \iint dx_i dp_i$

Application to the derivation of part I **CERN**

The transformation $(y, y') \rightarrow (J_y, \theta_y)$ is symplectic:

$$
y = \sqrt{\frac{2J_y R}{Q_y}} \cos \theta_y, \qquad y' = \sqrt{\frac{2J_y Q_y}{R}} \sin \theta_y
$$

$$
J_y = \frac{1}{2} \left[y^2 \frac{Q_y}{R} + y'^2 \frac{R}{Q_y} \right], \ \theta_y = \text{atan} \left(\frac{R y'}{Q_y y} \right)
$$

$$
\text{so } \mathcal{J} = \begin{pmatrix} \frac{\partial J_y}{\partial y} & \frac{\partial J_y}{\partial y'} \\ \frac{\partial \theta_y}{\partial y} & \frac{\partial \theta_y}{\partial y'} \end{pmatrix} = \begin{pmatrix} \frac{y Q_y}{R} & \frac{y' R}{Q_y} \\ -\sqrt{\frac{Q_y}{2J_y R}} \sin \theta_y & \sqrt{\frac{R}{2J_y Q_y}} \cos \theta_y \end{pmatrix}
$$

and we get (see appendix)

$$
\mathcal{J}^T \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \mathcal{J} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
$$

Hamiltonian of our simple Vlasov solver (part I)

For our simple Vlasov equation in part I we had

$$
\frac{\partial H}{\partial y'} = \frac{dy}{dt} = v \cdot y'
$$

$$
-\frac{\partial H}{\partial y} = \frac{dy'}{dt} = \frac{F_y^{imp}}{m_0 \gamma v} - vy \left(\frac{Q_y}{R}\right)^2
$$

to the Hamiltonian

which corresponds to the Hamiltonian

$$
H = H_0 + \Delta H = \frac{v}{2} \left[y'^2 + y^2 \left(\frac{Q_y}{R} \right)^2 \right] - \frac{y}{m_0 \gamma v} F_y^{imp}
$$

$$
= \frac{vQ_y}{R} J_y - \sqrt{\frac{2J_y R}{Q_y}} \cos \theta_y \frac{F_y^{imp}}{m_0 \gamma v}
$$

Application to our simple Vlasov solver (part I)

 $ln(1)$ \mathcal{L} $\overline{}$ $\overline{1}$ $\frac{1}{2}$ ϵ \overline{C} orair α
αtac ⋅ .
he $\overline{\mathsf{n}}$ narita
Darit ⋅ d VI **Vlasc** In (J_y, θ_y) coordinates, the linearized Vlasov equation \mathbf{E}

$$
\frac{\partial \Delta \psi}{\partial t} + [\Delta \psi, H_0] + [\psi_0, \Delta H] = 0
$$

and
Thetal mondulated gives immediately

> Reminder: $[f, g] = \frac{\partial f}{\partial x}$ ∂J_y ∂g $\partial \theta_{y}$ $-\frac{\partial f}{\partial \theta}$ $\partial \theta_{y}$ ∂g ∂J_y

$$
\frac{\partial \Delta \psi}{\partial t} - \frac{\partial \Delta \psi}{\partial \theta_y} \omega_0 Q_y + \psi'_0(J_y) \sqrt{\frac{2J_y R}{Q_y}} \sin \theta_y \frac{F_y^{imp}}{m_0 \gamma v} = 0
$$

Building a Vlasov solver: method outline

- 1. Write Hamiltonian
	- 2. Choose coordinates 2.
	- 3. Write stationary distribution
	- 1. Write Hamiltonian
2. Choose coordinates
3. Write stationary distribution
4. Write linearized Vlasov equation
	- 5. Decompose perturbation
	- 6. Reduce number of variables Write Hamiltonian
Choose coordinates
Write stationary distribution
Write linearized Vlasov equa
Decompose perturbation
Reduce number of variables
Write impedance force
Final equation
	- 7. Write impedance force
	- 8. Final equation

New $\overline{}$ outline

A more elaborate Vlasov solver

- \triangleright Let's try to relieve some assumptions of the Vlasov solver of part I:
	- **IMPEDE** Impedance $Z_{\gamma}(\omega)$ is the only source of instability considered, and gives the EM force arising from the interaction of the beam with the resistive or geometric elements around it,
	- only vertical plane, with position and "momentum" $(y, y' = \frac{dy}{dx})$ \overline{ds} dy
	- (using for convenience y' rather than p_y)
purely linear, uncoupled optics in transve
smooth approximation,
no longitudinal motion, i.e. essentially rig
ehromaticity $Q_{\overline{y}}^* = \frac{dQ_{\overline{y}}}{dS} = 0$, § purely linear, uncoupled optics in transverse, within smooth approximation,
	- **E** no longitudinal motion, i.e. essentially rigid bunches in z,

$$
\text{H}\text{-}\text{chromaticity }\theta^{\neq}_{\frac{\#}{\#}} = \frac{d\theta_{\overline{y}}}{d\theta} = 0,
$$

But we still neglect any effect from the transverse plane on the longitudinal motion.

• Phase space distribution function is then

 = , \$; = ⁼ , \$, , ≡ } @ ;

Hamiltonian

We add linear longitudinal motion (see A.W. Chao, *Physics of Collective Beam* Instabilities in High Energy Accelerators, John Wiley & Sons (1993), chap. 6):

P @ ⁼ @EE [−] y ^P [−] factor ² ^P 2 \$ E = E@ + E 8FG(;) Synchrotron E Δ ⁼ [−] 2E angular frequency cos E E @

 $J_{\rm v}$ remains as defined previously

$$
J_{y} = \frac{1}{2} \left[y^2 \frac{Q_{y0}}{R} + y'^2 \frac{R}{Q_{y0}} \right]
$$

Impedance force

Final equation

Hamiltonian

Coordin

CERN

Station distrib**u**

Linear Vlasov

Perturbation decomp.

Reduction variables

> and is still assumed to be an invariant, despite the (y, z) coupling introduced by chromaticity \rightarrow approximation (typically done in textbooks).

Slippage

Transformation of coordinates

Hamiltonian

CERN

In transverse:
$$
J_y = \frac{1}{2} \left[y^2 \frac{Q_{y0}}{R} + y'^2 \frac{R}{Q_{y0}} \right], \theta_y = \text{atan} \left(\frac{R y'}{Q_{y0} y} \right)
$$

Coordinates

Stationary distribution

Linearized Vlasov eq.

Perturbation decomp.

Reduction variables

Impedance force

Final equation

In longitudinal: $z = \sqrt{\frac{2J_z v \eta}{\omega_s}} \cos \phi$, $\delta = \sqrt{\frac{2J_z \omega_s}{v \eta}} \sin \phi$,
 $J_z = \frac{1}{2} \left(\frac{\omega_s}{v \eta} z^2 + \frac{v \eta}{\omega_s} \delta^2 \right)$, $\phi = \text{atan} \left(\frac{v \eta \delta}{\omega_s z} \right)$

Then the Hamiltonian reads:

$$
H_0 = \omega_0 Q_y J_y - \omega_s J_z
$$

$$
\Delta H = -\sqrt{\frac{2J_y R}{Q_y}} \cos \theta_y \frac{F_y^{imp}}{m_0 \gamma v}
$$

CERN

Hamiltonian

Coordinates

Stationary distribution

Linearized Vlasov eq.

Perturbation decomp.

> **Reduction variables**

Impedance force

Final equation

Stationary distribution

The new unperturbed Hamiltonian

$$
H_0 = \omega_0 Q_y J_y - \omega_s J_z
$$

admits as stationary distribution

 $\psi_0(y, y', z, \delta; t) = f_0(J_y) g_0(J_z)$

Linearized Vlasov equation

 $H_0 = \omega_0 Q_{\nu} J_{\nu} - \omega_s J_z$

 $\Delta H = -\int \frac{2J_y R}{Q_v} \cos \theta_y \frac{F_y^{tmp}(z;t)}{m_0 \gamma v}$

Coordinates

with

Hamiltonian

CERN

Stationary <u>distribution</u>

Linearized Vlasoveg.

Perturbation decomp.

Reduction variables

Impedance force

Final equation

We get: $f_0' = \frac{df_0}{dJ_v}$ Reminder: $[f, g] = \frac{\partial f}{\partial J_v} \frac{\partial g}{\partial \theta_v} - \frac{\partial f}{\partial \theta_v} \frac{\partial g}{\partial J_v} + \frac{\partial f}{\partial r} \frac{\partial g}{\partial \phi} - \frac{\partial f}{\partial \phi} \frac{\partial g}{\partial r}$ $\left|\frac{\partial \Delta \psi}{\partial t} - \frac{\partial \Delta \psi}{\partial \theta_{y}} \omega_{0} Q_{y} + \frac{\partial \Delta \psi}{\partial \phi} \omega_{s} + f_{0}'(J_{y}) g_{0}(J_{z})\right|^{2} \frac{Z J_{y} R}{Q_{y}} \sin \theta_{y} \frac{F_{y}^{imp}}{m_{0} \nu v} = 0$

Note: from our initial assumption that the transverse plane does not affect the longitudinal one, we have neglected $\frac{\partial \Delta H}{\partial z}$, as in Chao's book.

 $\psi_0(y, y', z, \delta; t) = f_0(J_v)g_0(J_z)$

Writing the perturbation

We assume again a single mode of angular frequency $\Omega \approx Q_{\nu 0} \omega_0$, and we introduce for convenience (no need to be a canonical transform at this stage)

$$
r = \sqrt{\frac{2J_z v \eta}{\omega_s}}, \qquad z = r \cos \phi, \qquad \frac{v \eta}{\omega_s} \delta = r \sin \phi
$$

such that

$$
\Delta \psi (J_y, \theta_y, J_z, \phi; t) = \Delta \psi_1 (J_y, \theta_y, r, \phi) e^{j\Omega t}
$$

Then we decompose this mode using a Fourier series of the angle θ_{v} and another one for the angle ϕ : —

Additional phase factor (that we are allowed to put here without loss of generality) – will appear later to be very convenient \rightarrow headtail phase factor

Hamiltonian

CERN

Coordinates

Stationary distribution

Linearized Vlasov eq.

Perturbation decomp.

Reduction variables

Impedance force

Final equation

Reducing the number of variables

Injecting the perturbation into Vlasov equation, we can simplify it **Hamiltonian** even more: $\frac{\partial \Delta \psi}{\partial t} - \frac{\partial \Delta \psi}{\partial \theta_y} Q_y + \frac{\partial \Delta \psi}{\partial \phi} \omega_s + f'_0(J_y) g_0(r) \left| \frac{2J_y R}{Q_y} \sin \theta_y \frac{F_y^{imp}}{m_0 \gamma v} \right| = 0$ **Coordinates** $\Leftrightarrow e^{j\Omega t}\sum_{n=-\infty}^{+\infty}f_p\bigl(J_y\bigr)e^{jp\theta y}\underbrace{\left(-\frac{jpQ_y'z}{\eta R}\right)^{+\infty}}_{l=-\infty}R_l(r)e^{-jl\phi}\left(j\Omega-jpQ_{y0}\omega_0-jl\omega_s\right)=$ **Stationary** distribution **Linearized** $-f'_0(J_y)g_0(r)\sqrt{\frac{2J_yR}{Q_y}}\frac{e^{j\theta_y}-e^{j\theta_y}}{2j}\frac{F_y^{imp}}{m_0\gamma v}$ Vlasov eq. **Perturbation** This is where we use decomp. this factor to simplify the term in brackets. **Reduction** variables As in part I, term by term identification leads to $f_p(f_v) = 0$ for any $p \neq \pm 1$ **Impedance** force and the assumption $\Omega \approx Q_{\gamma 0} \omega_0$, gives $f_{-1}(J_{\nu}) \approx 0$ **Final equation**

CERN

Reducing the number of variables

This gives the transverse shape of the perturbative distribution as in part |:

$$
f_1(J_y) \propto f'_0(J_y) \sqrt{\frac{J_y R}{2Q_y}}
$$

Putting the proportionality constant inside $R_I(r)$:

$$
\Rightarrow \Delta \psi \big(J_y, \theta_y; t \big) = e^{j\Omega t} e^{j\theta_y} f_0' \big(J_y \big) \sqrt{\frac{J_y R}{2Q_y}} \cdot e^{-\frac{jQ_y' z}{\eta R}} \cdot \sum_{l=-\infty}^{+\infty} R_l(r) e^{-jl\phi}
$$

Only the r and ϕ dependencies remain to be dealt with.

CERN

Hamiltonian

Coordinates

Stationary distribution

Linearized Vlasov eq.

Perturbation decomp.

Reduction

variables

Impedance force

Final equation

Force from impedance

 \mathbf{L}

Compared to part I, one "simply" puts the additional longitudinal dependence:

Coordinates

Hamiltonian

CERN

Stationary distribution

Linearized Vlasov eq.

Perturbation decomp.

Reduction variables

Impedance force

Final equation

$$
= \frac{e^2}{2\pi R} \sum_{k=-\infty}^{+\infty} \iint d\tilde{z} d\delta W_y(\tilde{z} + 2\pi kR - z)
$$

$$
\times \iint dJ_y d\theta_y \, \Delta \psi \left(J_y, \theta_y, r, \phi; t - k \frac{2\pi R}{v} \right) \sqrt{\frac{2J_y R}{Q_y}} \cos \theta_y
$$

and one can simplify this as in part I, using in addition:

$$
\iint d\tilde{z} d\delta = \iint dJ_z d\phi = \frac{\omega_s}{\nu \eta} \iint r dr d\phi
$$

Bessel function

$$
\int_0^{2\pi} d\phi \, e^{-jl\phi} e^{-\frac{-jQ'_{y}r \cos \phi}{\eta R}} = 2\pi j \sqrt{\frac{Q'_{y}r}{\eta R}}
$$

 F_{y}^{imp}

CERN

Force from impedance

In the end, defining the coherent tune of the mode $Q_{coh} = \frac{\Omega}{\omega_0}$, we get:

$$
F_y^{imp} = e^{j\Omega t} \frac{jN\omega_0 e^2}{2\pi Q_{y0}} \sum_{k=-\infty}^{+\infty} Z_y [(Q_{coh} + k)\omega_0)] e^{\frac{-j(Q_{coh}+k)r \cos \phi}{R}}
$$

$$
\times \sum_{l'=-\infty}^{+\infty} j^{l'} \int_0^{+\infty} \tilde{r} d\tilde{r} R_{l'}(\tilde{r}) J_{l'} \left[\left(Q_{coh} + k - \frac{Q_y'}{\eta} \right) \frac{\tilde{r}}{R} \right]
$$

Coordinates

Hamiltonian

Stationary distribution

Linearized Vlasov eq.

Perturbation decomp.

Reduction variables

Impedance force **Final equation**

Sacherer integral equation

 $+\infty$

Plugging everything back into Vlasov equation:

Coordinates

Hamiltonian

CERN

Stationary distribution

Linearized Vlasov eq.

Perturbation decomp.

Reduction variables

Impedance force

$$
Final \,\, equation
$$

$$
R_{l'}(r)e^{-jl'\phi}\left(\Omega - Q_{y0}\omega_0 - l'\omega_s\right) = \frac{jN\omega_0e^2}{4\pi Q_{y0}m_0\gamma v}g_0(r)
$$

\n
$$
\times \sum_{k=-\infty}^{+\infty} Z_y[(Q_{coh} + k)\omega_0)]e^{-j\left(Q_{coh} + k - \frac{Q_y'}{\eta}\right)r\cos\phi}
$$

\n
$$
\times \sum_{l'=-\infty}^{+\infty} j^{l'}\int_0^{+\infty} \tilde{r}d\tilde{r}R_{l'}(\tilde{r})J_{l'}\left[\left(Q_{coh} + k - \frac{Q_y'}{\eta}\right)\frac{\tilde{r}}{R}\right]
$$

We can get rid of ϕ by integrating both sides with $\frac{1}{2\pi} \int_0^{+\infty} d\phi e^{jl\phi}$, and using again (here α is any constant)

$$
\int_0^{2\pi} d\phi \, e^{jl\phi} e^{-j\alpha \cos \phi} = 2\pi j^{-l} J_l(\alpha)
$$

Sacherer integral equation

In the end, doing as in part I the approximation $Q_{coh} \approx Q_{\gamma 0}$ (smoothness of impedance and Bessel functions), we get the famous equation:

$$
\Omega - Q_{y0}\omega_0 - l\omega_s R_l(r) = \frac{jN\omega_0 e^2}{4\pi \gamma m_0 v Q_{y0}} g_0(r) \sum_{l' = -\infty}^{+\infty} j^{l'-l}
$$

$$
\times \sum_{k=-\infty}^{+\infty} \int_0^{+\infty} \tilde{r} d\tilde{r} R_{l'}(\tilde{r}) J_{l'} \left[\left(Q_{y0} + k - \frac{Q'_y}{\eta} \right) \frac{\tilde{r}}{R} \right]
$$

$$
\times Z_y \left(\left(Q_{y0} + k \right) \omega_0 \right) J_l \left[\left(Q_{y0} + k - \frac{Q'_y}{\eta} \right) \frac{r}{R} \right]
$$

Hamiltonian

Coordinates

CERN

Perturbation decomp.

Reduction variables

Impedance force

Solving Sacherer integral equation **CERN**

They are various options to solve the integral equation:

- \triangleright Consider a simple and easy to solve longitudinal distribution $g_0(r)$, e.g. an airbag model (see A. Chao's book).
- \triangleright Discretize $g_0(r)$ as a superposition of airbag models (as in the NHTVS).

$$
\triangleright \text{ Integrate with } \int_0^{+\infty} r dr J_l \left[\left(Q_{y0} + k - \frac{Q'_y}{\eta} \right) \frac{r}{R} \right] \text{ and solve for } \sigma_{lk} =
$$

$$
\int_0^{+\infty} r dr J_l \left[\left(Q_{y0} + k - \frac{Q'_y}{\eta} \right) \frac{r}{R} \right] R_l(r) \text{ (as in Laclare's approach).}
$$

 \triangleright Decompose $R_l(r)$ and $g_0(r)$ over a basis of orthogonal polynomials such as Laguerre polynomials and compute the integrals involving Bessel functions analytically, as in MOSES and DELPHI:

$$
R_l(r) = A \left(\frac{r}{B}\right)^{|l|} e^{-\kappa r^2} \sum_{n=0}^{+\infty} c_l^n \left(\frac{|l|}{n}\right) (\kappa r^2)
$$

 κ , A and B constants to be adjusted

Solving Sacherer integral equation

In the end one typically obtains an eigenvalue problem:

 \Rightarrow In the end one needs to diagonalize the matrix $\mathcal M$, which can be done numerically in many ways (e.g. Python, MATLAB®, Mathematica® , C, etc.)

 \Rightarrow The matrix being infinite in principle, the problem of truncation is the most important (and essentially the only) numerical issue: truncation sets the number of possible modes considered, and convergence has to be checked for each case.

CERN

Vlasov solvers have been heavily benchmarked w.r.t. multi-particle simulations: here HEADTAIL (multi-particle simulation) vs. Laclare's Vlasov approach, for LHC coupled-bunch instabilities vs. chromaticity

Benchmarks

Benchmarks

HEADTAIL vs MOSES (Vlasov solver), for the SPS transverse mode coupling instability:

From **B. Salvant**'s PhD thesis [*EPFL* n° *4585 (2010)*]

⇒ Vlasov solvers and multiparticle compare very well, provided they are used in the same situation (and are well converged!)

Applications – LEP TMCI with damper

D Brandt et al.

Impedance model: two broad-band resonators (RF cavities $+$ bellows), the rest is relatively small (<10%) [G. Sabbi, 1995].

- \triangleright experimental tune shifts and TMCI threshold (from simple formula) well reproduced,
- \triangleright TMCI threshold slightly less than 1mA.

Figure 12. Measurement of the 0 and -1 modes of oscillation as a function of the bunch current at LEP for $Q_s = 0.082$. As the current increases the two modes approach until they merge at the instability threshold.

Transverse feedback damper: several ideas and trials in LEP

- \triangleright reactive feedback (prevent mode 0 to shift down and couple with mode -1) \rightarrow not more than 5-10 % increase in threshold, despite several attempts and models developed [Danilov-Perevedentsev 1993, Sabbi 1996, Brandt et al 1995],
- \triangleright resistive feedback, first found ineffective [Ruth 1983], tried at LEP but never used in operation.

Applications – LEP TMCI with damper **CERN**

Instability threshold vs. chromaticity Q' and damper gain (up to 10 turns) with DELPHI Vlasov solver:

 0.08

0.06

 0.04

 0.02

 0.00

 220

 -15

 -10

 -5

Damping rate (1/nb turns)

Resistive damper: one cannot do better than the "natural" (i.e. without damper) TMCI threshold.

Reactive damper: one can do a little better than the "natural" TMCI. \rightarrow seems to match (qualitatively) LEP observations.

 $5¹$

 10

15

20

LEP, reactive damper, single-bunch instability threshold $vs. Q'$ and damping rate

0.90

0.75

0.60

 0.45

 0.30

 0.15

 $[MA]$

Applications – LHC

Predicting the octupole instability threshold vs. chromaticity Q' and damper gain, with DELPHI:

… and we can also plot the respective contributions of each machine elements (essentially collimators):

Direct Vlasov solvers – summary part II

- \triangleright We have revisited the theory exposed in part I, introducing Hamiltonians and Poisson brackets to ease up the analytical work.
- \triangleright We have derived Sacherer integral equation within this framework, reintroducing the longitudinal plane.
- \triangleright We went through a few ways to solve Sacherer integral equation, and how to deal with the associated eigenvalue problem.
- \triangleright Finally we have shown benchmarks and applications of Vlasov solvers in CERN synchrotrons (LEP, SPS, LHC).

 $\mathbb C$ FRN

Appendix

Symplectic transformations **CERN**

The transformation
$$
(y, y') \rightarrow (J_y, \theta_y)
$$
 is symplectic:
\n
$$
y = \sqrt{\frac{2J_yR}{Q_y}} \cos \theta_y, \quad y' = \sqrt{\frac{2J_yQ_y}{R}} \sin \theta_y, \quad J_y = \frac{1}{2} \left[y^2 \frac{Q_y}{R} + y'^2 \frac{R}{Q_y} \right], \quad \theta_y = \text{atan} \left(\frac{R_y}{Q_y y} \right)
$$
\n
$$
\text{so} \quad \mathcal{J} = \begin{pmatrix} \frac{\partial J_y}{\partial y} & \frac{\partial J_y}{\partial y'} \\ \frac{\partial \theta_y}{\partial y} & \frac{\partial \theta_y}{\partial y'} \end{pmatrix} = \begin{pmatrix} \frac{y Q_y}{R} & \frac{y' R}{Q_y} \\ -\sqrt{\frac{Q_y}{2J_yR}} \sin \theta_y & \sqrt{\frac{R}{2J_yQ_y}} \cos \theta_y \end{pmatrix}
$$

and we get

$$
\begin{pmatrix}\n\frac{y \, Q_y}{R} & -\sqrt{\frac{Q_y}{2J_yR}} \sin \theta_y \\
\frac{y'R}{Q_y} & \sqrt{\frac{R}{2J_yQ_y}} \cos \theta_y\n\end{pmatrix} \cdot \begin{pmatrix}\n0 & 1 \\
-1 & 0\n\end{pmatrix} \cdot\n\begin{pmatrix}\n\frac{y \, Q_y}{R} \\
-\sqrt{\frac{Q_y}{2J_yR}} \sin \theta_y & \sqrt{\frac{R}{2J_yQ_y}} \cos \theta_y\n\end{pmatrix} = \begin{pmatrix}\n\frac{Q_y}{Q_y} & \frac{y'R}{Q_y} \\
-\sqrt{\frac{Q_y}{2J_yR}} \sin \theta_y & \frac{y'R}{Q_y} \\
-\sqrt{\frac{R}{2J_yQ_y}} \cos \theta_y & \frac{y'R}{Q_y}\n\end{pmatrix} \cdot \begin{pmatrix}\n\frac{y \, Q_y}{R} & \frac{y'R}{Q_y} \\
-\sqrt{\frac{Q_y}{2J_yR}} \sin \theta_y & \sqrt{\frac{R}{2J_yQ_y}} \cos \theta_y\n\end{pmatrix} = \begin{pmatrix}\n0 & 1 \\
-1 & 0\n\end{pmatrix}
$$

The transformation
$$
(z, \delta) \to (J_z, \phi)
$$
 is symplectic:
\n
$$
z = \sqrt{\frac{2J_z v \eta}{\omega_s}} \cos \phi, \quad \delta = \sqrt{\frac{2J_z \omega_s}{v \eta}} \sin \phi, \quad J_z = \frac{1}{2} \left(\frac{\omega_s}{v \eta} z^2 + \frac{v \eta}{\omega_s} \delta^2\right), \quad \phi = \text{atan}\left(\frac{v \eta \delta}{\omega_s z}\right)
$$

$$
\text{so} \quad J = \begin{pmatrix} \frac{\partial J_z}{\partial z} & \frac{\partial J_z}{\partial \delta} \\ \frac{\partial \phi}{\partial z} & \frac{\partial \phi}{\partial \delta} \end{pmatrix} = \begin{pmatrix} \frac{\omega_s}{\eta v} z & \frac{\nu \eta}{\omega_s} \delta \\ \frac{\delta}{2J_z} & \frac{z}{2J_z} \end{pmatrix}
$$

 \overline{a}

and we get

$$
\begin{pmatrix}\n\frac{\omega_s}{\eta v}z & -\frac{\delta}{2J_z} \\
\frac{\nu\eta}{\omega_s}\delta & \frac{z}{2J_z}\n\end{pmatrix}\n\cdot\n\begin{pmatrix}\n0 & 1 \\
-1 & 0\n\end{pmatrix}\n\cdot\n\begin{pmatrix}\n\frac{\omega_s}{\eta v}z & \frac{\nu\eta}{\omega_s}\delta \\
-\frac{\delta}{2J_z} & \frac{z}{2J_z}\n\end{pmatrix}\n=\n\begin{pmatrix}\n\frac{\delta}{2r} & \frac{\omega_s}{\eta v}z \\
-\frac{z}{2J_z} & \frac{\nu\eta}{\omega_s}\delta\n\end{pmatrix}\n\cdot\n\begin{pmatrix}\n\frac{\omega_s}{\eta v}z & \frac{\nu\eta}{\omega_s}\delta \\
-\frac{\delta}{2J_z} & \frac{z}{2J_z}\n\end{pmatrix}\n=\n\begin{pmatrix}\n0 & 1 \\
-1 & 0\n\end{pmatrix}
$$