

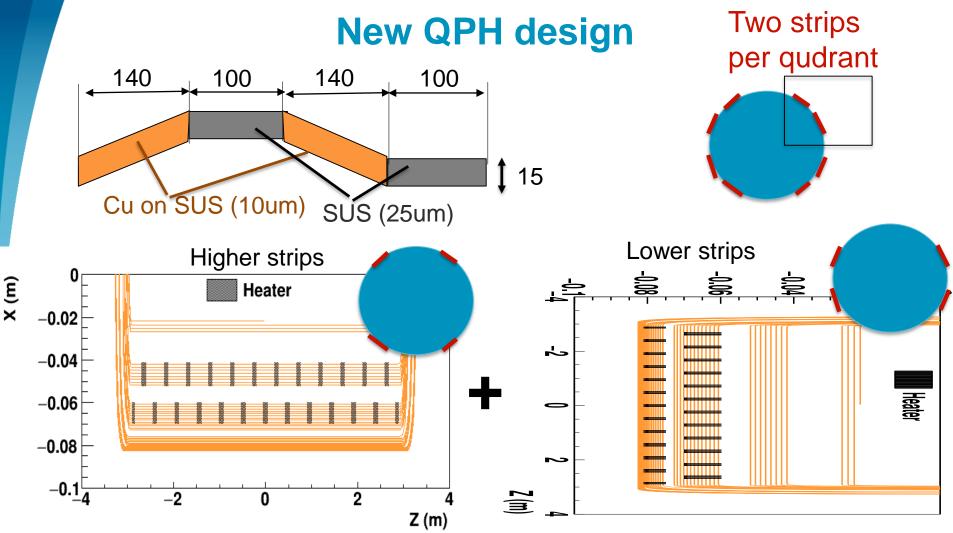
Quench simulation and results for the MBXF magnet

Kento Suzuki (KEK)

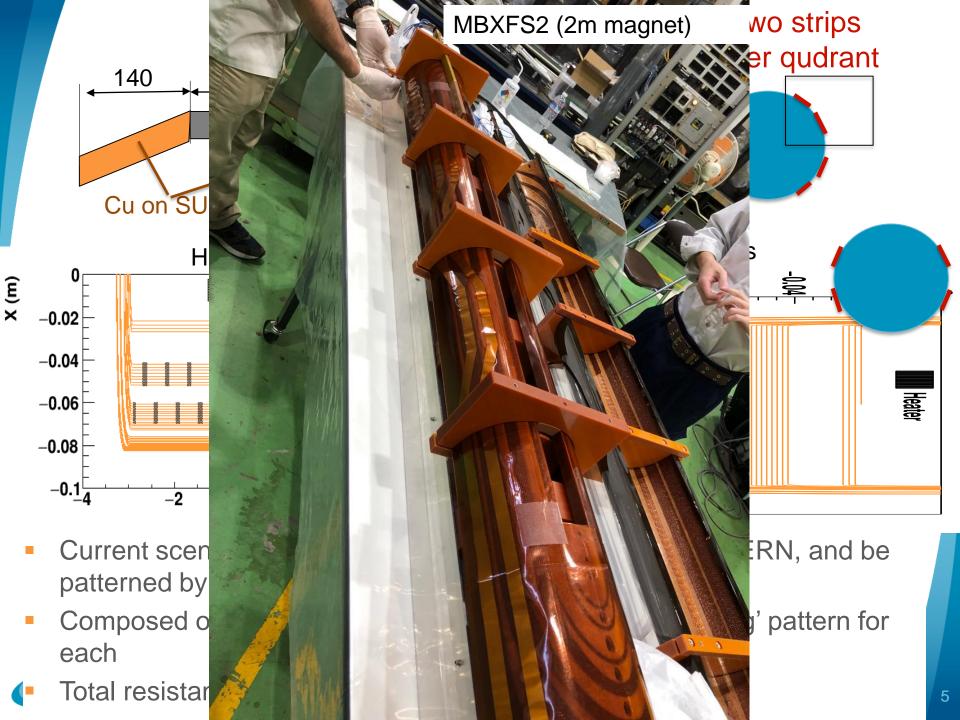
2018.09.21

Introduction

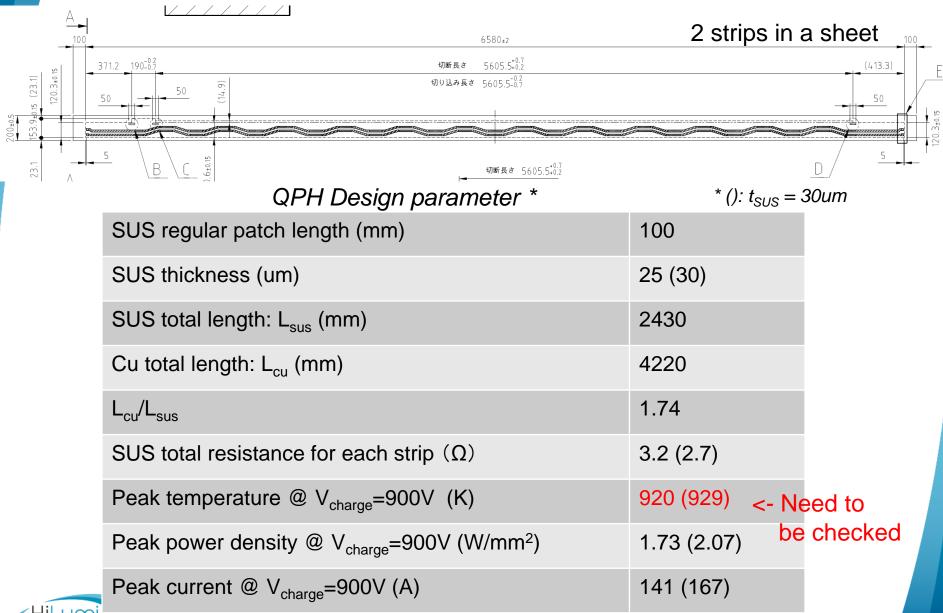
- We have to understand the inspection or verification that is required for the electrical integrity of our magnet, MBXF, before the production stage
- Following the guideline described in EDMS1963398 (by Fernando and Felix), we have estimated the required test voltage as presented in this slide
- Please refer to the past slides (<u>https://indico.cern.ch/event/693219/</u>) for details of the simulation methodology



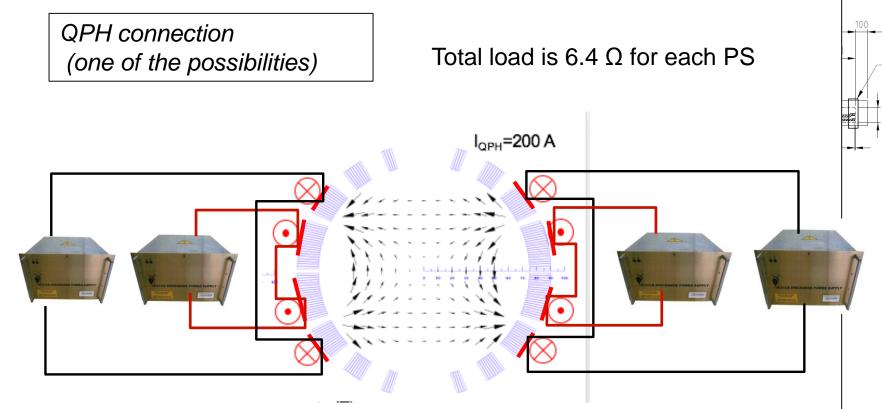
Test voltage (Snapshot from EDMS1963398)


Maximum expected coil voltage at quench (V) [2]	To ground	Simulations, U _{Coil to ground}			
	To quench heater	Simulations, U _{Coil to heater}			
Minimum design withstand coil voltage at nominal operating conditions (V)	To ground	$U_{test_NOC_GND} = 2 * U_{Coil \ to \ ground} + 500$			
	To quench heater	$U_{test_NOC_Heater} = 2 * U_{Coil\ to\ heater} + 500$			
Minimum design withstand coil voltage at warm* (V)	To ground	$U_{test_warm_GND} = 2 * U_{test_NOC_GND}$			
	To quench heater	$U_{test_warm_Heater} = 2 * U_{test_NOC_Heater}$			
Test voltage to ground for installed systems at nominal operating conditions (V)		$U_{TO GROUND @ NOC} = 1.2 * U_{Coil to ground}$			
Test voltage to ground for installed systems at warm (V)		$U_{TO GROUND @ WARM} = \frac{U_{test_NOC_GND}}{5}$			
Test voltage to heater for installed systems at nominal operating conditions (V)		$U_{TO HEATER @ NOC} = 1.2 * U_{Coil to Heater}$			
Test voltage to heater for installed systems at warm (V)		$U_{TO HEATER@ WARM} = \frac{U_{test_NOC_Heater}}{5}$			

Design withstand and test voltages need to be estimated from the simulation level



- Current scenario: the base material will be produced by CERN, and be patterned by Trackwise
- Composed of the two strips per quadrant, having a 'zig-zag' pattern for each
- Total resistance is adjusted by using copper bridges

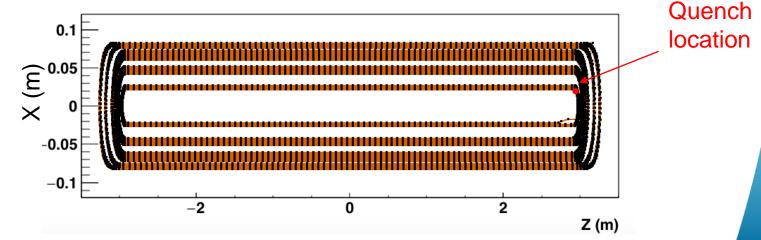

QPH for the 7-m magnet, MBXF

NOTE: In the simulation, we assume SUS thickness of 30 um

QPH for the 7-m magnet, MBXF

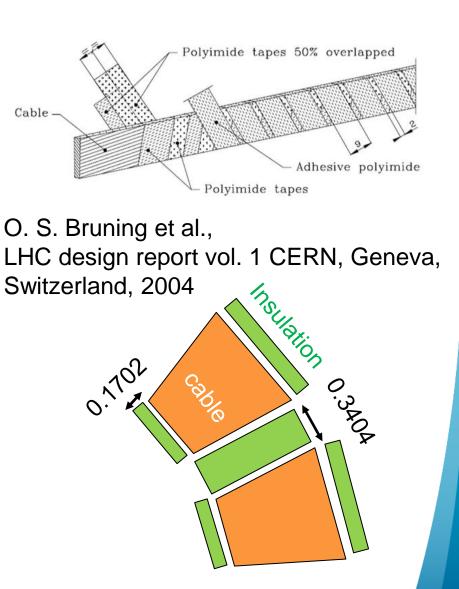
 R_{QPH} for each strip will be 3.2 Ω . It then increases to 6.4 Ω if two strips are connected in series.

From the experience in the 1st model cold test, we want not to exceed the total load of ~ 6.0Ω per PS.


Accordingly, we need 4 PSs in total for the 7-m magnet

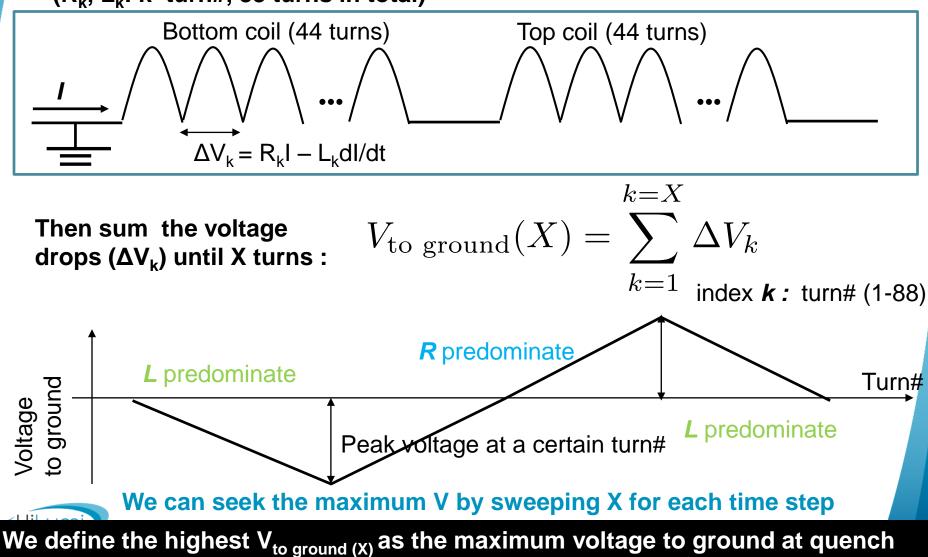
Quench simulation w/ new QPHs

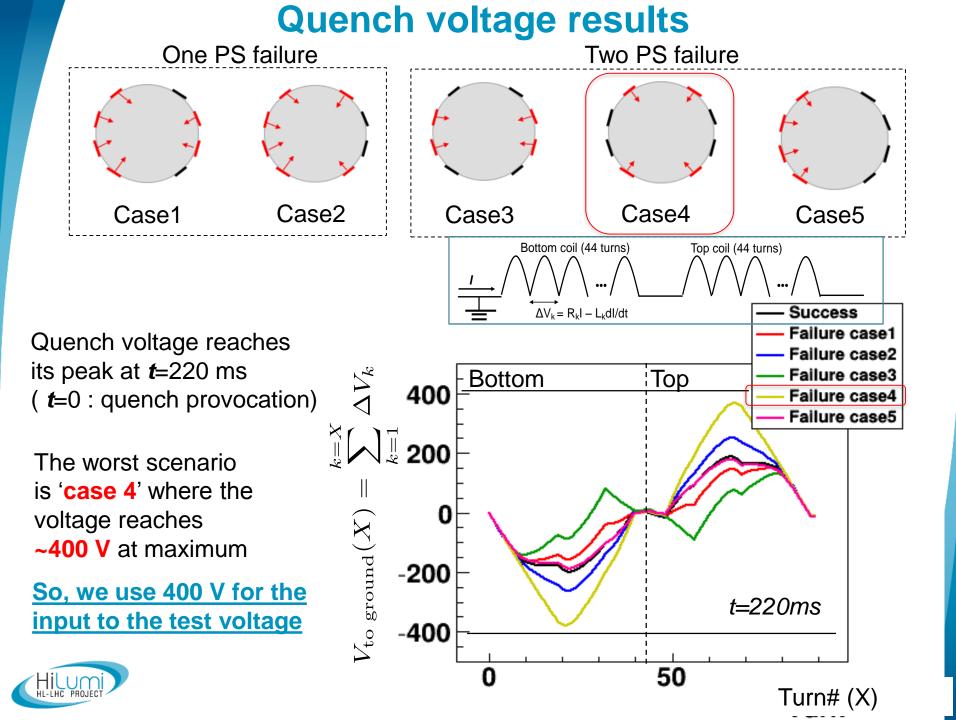
Magnet: 7m-long magnet (MBXFS2-end)


Operation current : 12047A (Nominal current)

- No dump resistor is used in the circuit
 - Only magnet : Series of L_{coil} (M_{coil}) and R_{coil}
 - The terminal voltage is fixed to **zero** throughout the energy dump
- 4 PSs scenario: two strips are connected in series
- Provoke the quench at the higher field region (B=5.2T) in the bottom coil, followed by the current dump and the QPH fire
 - Condition of the quench detection: ΔV_{bal}=0.1V w/ validation time=10ms

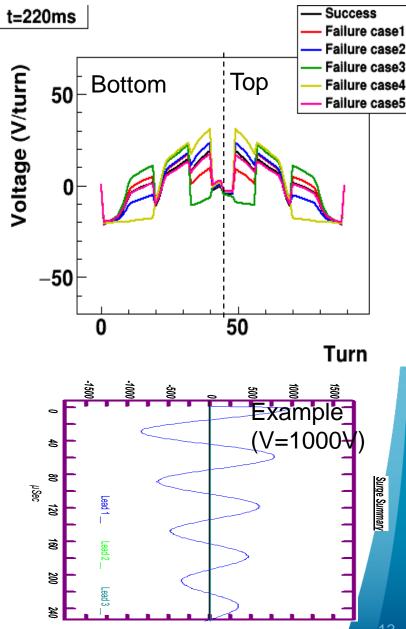
Conductor parameter in simulation


Cable	Parameter		
Copper to SC ratio	1.9		
Strand Φ (mm)	0.825		
# of strands	36		
RRR	150		
Thin edge (mm)	1.362		
Thick edge (mm)	1.598		
Cable width (mm)	15.1		
Insulation	Parameter		
1 st & 2 nd layer thickness (mm)	0.0508		
3 rd layer thickness (mm)	0.0686		
Total thickness (mm)	0.1702		



Estimation of the maximum voltage to ground for the 7m-long magnet

Resistance and mutual inductance are computed for each turn $(R_k, L_k: k=turn#, 88 turns in total)$



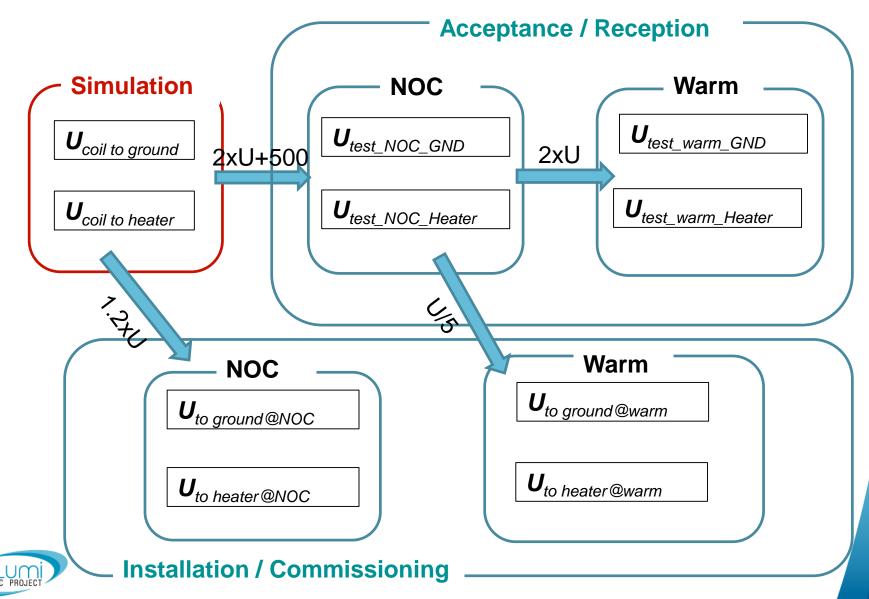
Test voltages for MBXF

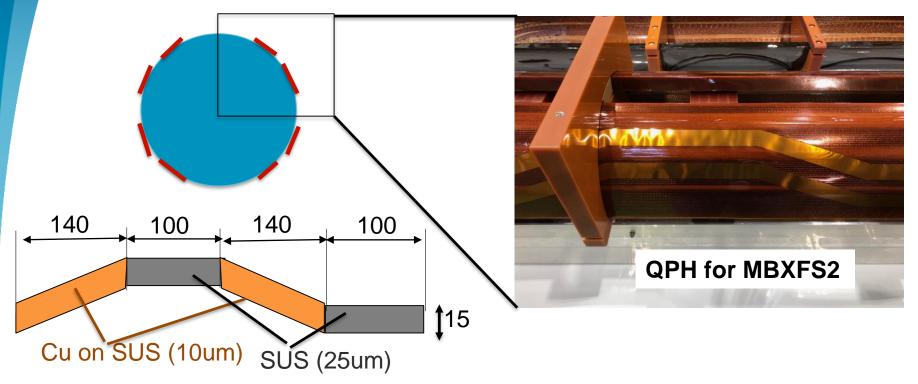
Maximum expected coil voltage at quench (V)	To ground	400
	To heater	900
Maximum design withstand coil voltage at nominal	To ground	1300
operating conditions (V)	To heater	2300
Minimum design withstand coil voltage at warm (V)	To ground	2600
	To heater	4600
Test voltage to ground for installed system at nominal conditions (V)	operating	480
Test voltage to ground for installed system at warm (V)	260	
Test voltage to heater for installed systems at nominal conditions (V)	1080	
Test voltage to heater for installed systems at warm (V	460	
Maximum leakage current (uA)	10	
Test voltage duration (s)	30 ₁₂	

Comment: Ringing voltage

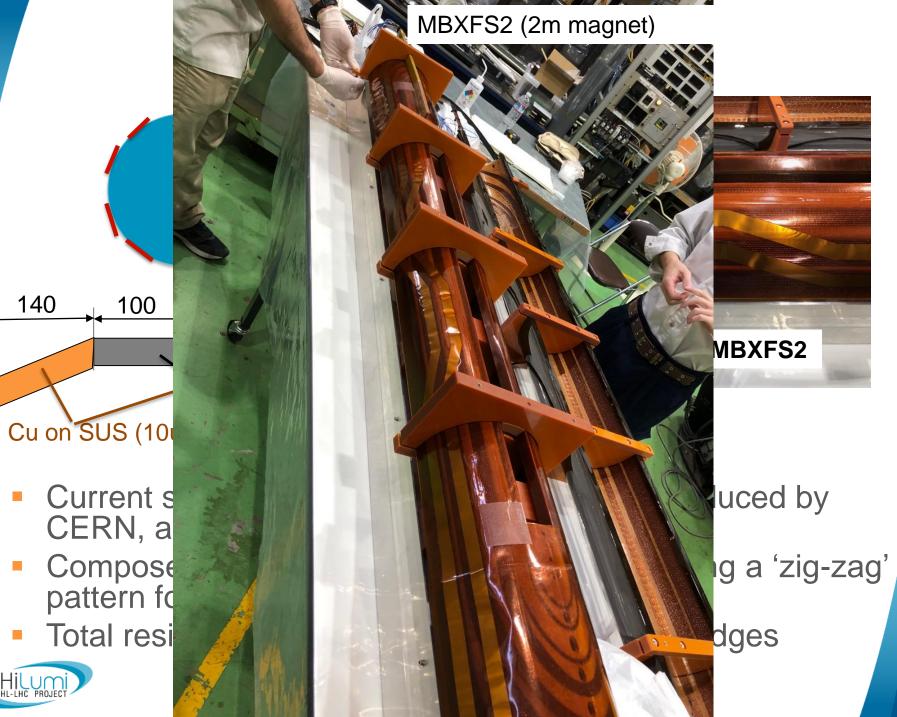
- Another input to the integrity check is 'ringing test voltage',
- In order to estimate the required ringing voltage, we've estimated the 'maximum inter-turn voltage' using our simulation, which showed 30 V/turn is expected at worst
- So, our present plan is to set 30x44 turns=1.3 kV as the ringing test voltage

Summary


- Maximum voltage-to-ground is calculated for the new QPH pattern and for the 7m-long magnet, MBXF
- The worst scenario is 'case 4' where the voltage reaches 400 V at maximum, which is then inputted to the integrity check list of our magnet
- Ringing voltage is also estimated on the simulation basis, which is set to 1.3 kV

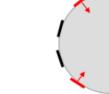

Supplement

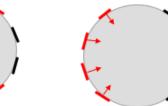
Test voltage diagram (in our understandings)



New QPH design

- Current scenario: the base material will be produced by CERN, and be patterned by Trackwise
- Composed of the two strips per quadrant, having a 'zig-zag' pattern for each
- Total resistance is adjusted by using copper bridges


Expected MIITs at I=13000A for the 7m magnet


<u>~</u>		
r.	7	

Case1 Case2		Case	23	Case ²	4	Case5	
			Quench integral	Expected total <i>MIT</i> (incl. simulation un			nty)
			$\int_{t=t_{valid}}^{t=\infty} I^2 dt$	HF quench (limit: 32.8		LF quenc (limit: 38	
	Success		23.9	30.0		35.4	
	Failure case	1	25.0	31.1		36.5	
	Failure case	2	25.0	31.1		36.5	
	Failure case	3	26.6	32.7		38.1	
	Failure case	4	26.7	32.8		38.2	
	Failure case	5	27.8	33.4		39.3	

Quench simulation: Heat balance equation among 'nodes'

$$S_{i,j,k}^{p} \Delta V_{i,j,k} \frac{T_{i,j,k}^{p+1} - T_{i,j,k}^{p}}{\Delta t} = q_{i,j,k}^{\text{joule},p} + q_{i,j,k}^{\text{qph},p} +$$

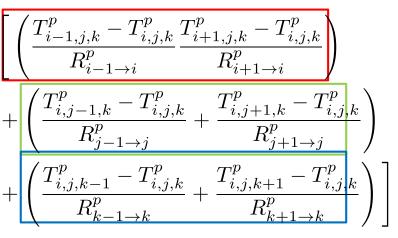
 $S_{i,j,k}$: Volumetric specific heat (J/m³/K)

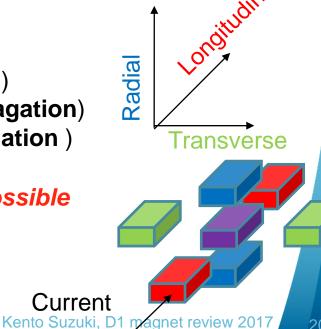
 $\Delta V_{i,j,k}$: Volume (m³)

 $q^{\text{joule}}_{i,j,k}$: Joule heat (J)

```
q^{qph}_{i,j,k}: Heat input from QPH (J)
```

R: Thermal resistance (m/W) Index *p*: time evolution


In case of D1 magnet:


- i-1 (i+1) \rightarrow i : Longitudinal direction (current direction)
- j-1 (j+1) \rightarrow j : Transverse direction (turn-to-turn propagation)
- k-1 (k+1) \rightarrow k : Radial direction (layer-to-layer propagation)

Strategy on the simulation: as realistic as possible

- Geometry : position, contact material
- Magnetic field
- Coil inductance etc.

20

Concept of 'turn' inductance

Mutual Inductance of

The stored energy \boldsymbol{W} :

Inductance of Loop '*i* (turn inductance)

W can also be expressed with 'flux':

$$W = \frac{1}{2} \sum_{i=1}^{n} \Phi_i I_i \quad \textcircled{2}$$

 $W = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} L_{ij} I_i I_j \quad (1)$

Combining (1) and (2), a relation of flux ϕ_i and the mutual inductance L_{ii} is :

$$\Phi_i = \sum_{j=1} L_{ij} I_j$$

If $I_i = I_i = I$ (loops are connected in series):

$$\Phi_i = \sum_{j=1}^n L_{ij}I \equiv L_iI$$

Thus, inductance of loop 'i' (= L_i : Turn inductance) can be calculated as ϕ_i/I

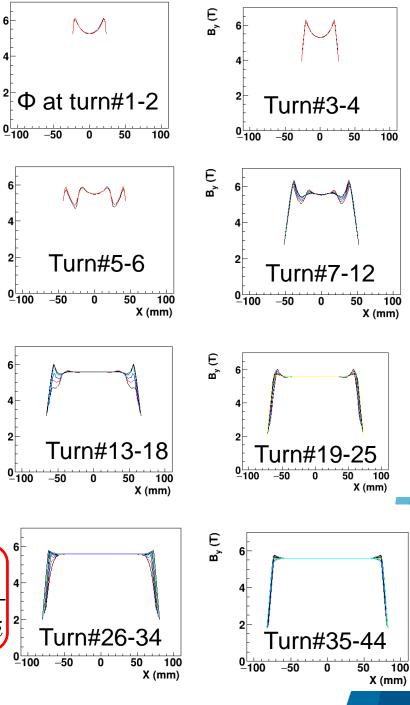
Inductance calculation

According to the 2D field calculation, most of the flux distributions (B_v at z=0) approximately look flat along B_y (j the x direction, and have similar strengths

The total inductance at turn $i (=L_i)$ can approximately be calculated by

$$L_{i} = \frac{\Phi_{i}}{I} = \frac{1}{I} \int_{i} \vec{B} \cdot d\vec{S}$$
$$\simeq \frac{B}{I} \int_{i} \vec{n} \cdot d\vec{S} = \frac{BS_{i}}{I}$$

Once the total inductance is obtained. L_i can be calculated by:


$$\frac{L_{i}}{L_{\text{total}}} \simeq \frac{S_{i}}{\sum_{i} S_{i}} \leftrightarrow L_{i} \simeq L_{\text{total}} \frac{S_{i}}{\sum_{i} S_{i}} \stackrel{\text{\tiny 6}}{\xrightarrow{}}_{100 - 50 - 0} \stackrel{\text{\tiny 6}}{\xrightarrow{}}_{50 - 10} \stackrel{\text{\tiny 6}}{\xrightarrow{}}_{100 - 50 - 0} \stackrel{\text{\tiny 6}}{\xrightarrow{}}_{50 - 10} \stackrel{\text{\tiny 6}}{\xrightarrow{}}_{\text{x (mn)}}$$

в_y (]

0_100

0_100

E, B

