CMS Computing and Offline status and challenges

Tommaso Boccali (INFN Pisa / CERN)
Markus Klute (MIT)
CMS Computing circa 2019: the status

- LHC concluded in December 2018 its second Run (“RunII”)
- CMS very successful in the data taking and analysis operations, with computing supporting unexpected requirements
 - ParkingB: additional 12 B events collected in 2018 to support CMS B Physics; a sample 20x larger than Babar’s and Belle’s!
 - Up to 6 kHZ additional rate to tape
 - HF flavour physics in Heavy Ions: 4.5 B additional Minbias events collected in Nov 2018
 - Rate to offline > 7 GB/s
- On top of that, standard pp operations (64/fb collected), analysis operations in full swing
 - 859 collider papers submitted
 - Derivative increasing!
So where is the problem?

- **2009-2012 (RunI)**: resources somehow overprovisioned, luxury mode
- **2013-2014 (LS1)**: Funding Agencies imposed a “flat funding”, which means ~20% increase/y thanks to Moore’s law (and friends)
- **2015-2018 (RunII)**: resources more and more constrained, Moore’s law starting to be excessively optimistic
- **2019-2020 (LS2)**: virtually no increase in resources granted
- **2021-2023 (RunIII)**: in principle not incredibly different from RunII, but LHC is willing to surprise us
- **2024-2025 (LS3)**: no increases?
- **2026+**: the **LHC Phase II, the problem!** → 6x PU, 7.5x HLT rate → factors 50-100x expected on paper
What to do?

- Even considering an optimistic factor ~4x from technology, **factors > 10x are missing**
- Miracles apart (quantum computing anyone?), we need an **intense and focused R&D program** in order to allow for an economically viable exploitation of HL-LHC
- In CMS, the activity is carried out in multiple groups, with an attempt of light steering from the **Evolution of Computing Model 202X → ECoM2X**
- It is not a Computing only effort, but an overall CMS effort, including:
 - Physics, Trigger, PPD and Run Coordination
 - Expert analysts
 - Representative of major funding agencies
- Activity split in 7 Working Groups

Some highlights in the next slides...
Physics choices, data rates and analysis model

- Investigations just started, and complex due to many stakeholders
- **Naive extrapolation from** $L=1.9\times10^{34}$ (@PU 50-55) \rightarrow $L=7.5\times10^{34}$ (@PU 200) explains the expected need of HLT output at ~ 7.5 kHz, mostly coming from single object triggers
 - Unless we want to *reduce / descope* a part of the physics program
 - Unless we can use *less inclusive trigger approaches* - to be studied, but “failed” for RunII
- More to be gained by **smart data handling** approaches:
 - **Park** a large fraction of triggers, and recover in the winter shutdown or LSs
 - **Scouting** datasets, with small “reco like” output to offline
 - Prompt reconstruction just in order to ensure data quality; *deferred reconstruction* for the rest
 - ...
- The amount of MC to produce has a large effect on resource needs
 - Need for a **common-HEP GAN based Fast Simulation**?
 - Event generators’ increase in resources due to $N(NNN)LO$ to be kept under control - **today it is not**
Heterogeneous architectures

- There is general consensus that the best performance/$ will not be obtained with standard CPUs.
- Testbeds active on GPUs, FPGAs, ... initially as standalone exercises.
- In the last year, CMS has performed a general attempt to systematically include these in the standard CMSSW Software Framework:
 - Allow multiple versions of “equivalent” modules, and defer the decision on which to use even very late (event by event, module by module).
 - Allow the best communication between modules exposing different interfaces (for example, chain GPU modules without moving data back to the host).
 - Have CUDA as an external tool in CMSSW, for native utilization.
 - Next step (in collaboration with other experiments?) is to try and have automatic code translation in place (is it even possible?)
- Status of the framework allows to run benchmarks / compare architectures / plan for infrastructure.
- This is an enabling technology - quite few implementations atm.
- → see Graeme’s talk on Tue.
The most important result of the previous ECoM17 task force has been the definition of a (even more) reduced data format.

CMS already in 2014 pioneered the definition of “small” general purpose data format, MiniAOD @ ~ 1/10 of the AOD.

Its adoption has been overwhelming in RunII: its adoption was expected to be for ~70% of analysis, it now reached 95%.

NanoAOD go even further: we were aiming at ~ 5 kB/ev, eventually we are at 1 kB/ev!

Expected analysis coverage ~50%; we hope to be positively surprised as for Mini!

Data Tier Size (kB)

<table>
<thead>
<tr>
<th>Data Tier</th>
<th>Size (kB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAW</td>
<td>100</td>
</tr>
<tr>
<td>GEN</td>
<td>< 50</td>
</tr>
<tr>
<td>SIM</td>
<td>1000</td>
</tr>
<tr>
<td>DIGI</td>
<td>3000</td>
</tr>
<tr>
<td>RECO(SIM)</td>
<td>3000</td>
</tr>
<tr>
<td>AOD(SIM)</td>
<td>400 (8x reduction)</td>
</tr>
<tr>
<td>MINIAOD(SIM)</td>
<td>50 (8x reduction)</td>
</tr>
<tr>
<td>NANOAOD(SIM)</td>
<td>1 (50x reduction)</td>
</tr>
</tbody>
</table>

Full RunII: 25 (DT) + 35 (MC) B events Expected to fit in 60TB

Exec Summary: “Prevalent analysis format in CMS reduced by a factor 3000x in event size since the start of RunI!”
Changing SW tools

- The CMS SW stack and Computing Infrastructure were **adequate for CMS needs in RunII**, and then some.
- We have **no real hint that RunIII would pose irresolvable problems either**; but, since RunIV is a different story, CMS has planned to **try and test any disruptive technology already in RunIII**
- Among the software tools, the biggest worries in the RunIV time scale are about software support and sustainability.

Common solutions with other experiments are a way to mitigate the support cost

- CMS identified **3 initial areas** where we can profit from existing OSS:
 - Geometry description: **testing DD4HEP from AIDA2020**; if testing is positive, transition in ~1 y
 - **CRIC from CERN** as a replacement for the Information System - already in place for the first use cases
 - **Rucio** (initially from ATLAS) as the **Data Management solution** - transition and then large scale test in ~1 y
Changes to the infrastructure

- Reducing the needs for **data replication** is of paramount importance for a cost reduction.
- This can come from aggressive policies paired with remote reads:
 - **CMS already executes WFs without data locality, and explicit overflows to “close sites” via the Xrootd federation.**
- The **data lake / DOMA** seems the most promising solution to-date for a safe storage of our data, with limited replication.
- It also **allows to think that most of the CPU resources can be served without managed disks.** This opens to:
 - HPC systems
 - Commercial Clouds
 - Ephemeral sites
- and drives the needs for **proper caching tools, easy to deploy.**
 - → DODAS, SoCal, ...
HPC systems

- An HPC races is going on, at least between major players
- Next big thing is **ExaScale** (10^{18} Flops - operations per second)
 - Should be well available by HL-LHC
- Somehow difficult to compare, technologies / benchmarks, but
 - LHC needs today the equivalent of ~30 PFlops
 - A single Exascale system is ok to process 30 “today” LHC
 - **Scaling:** a single Exascale system could process the whole HL-LHC with no R&D or model change
- Some FAs/countries are explicitly requesting HEP to use the HPC infrastructure as ~ only funding; it is generally ok IF we are allowed to be part in the planning (to make sure they are usable for us)

US: apparently no current way to have a say at least on big DOE systems
EU: ETP4HPC has at least “asked for HEP position”
China: no current way to have a say
HPC systems #2

- (Some) Our Funding Agencies are asking CMS to be prepared to use national HPC infrastructures for a sizeable part of our needs, by RunIV

- There are many not trivial problems to solve:
 - Data access (access, bandwidth, caches ...)
 - Accelerator Technology (KNL, GPU, FPGA, TPU, ???, ...)
 - Primary architecture (Intel, Power9, ARM, proprietary ...)
 - Submission of tasks (MPI vs Batch systems vs proprietary systems)
 - Node configuration (low RAM/Disk, ...)
 - Not-too-open environment (OS, Access policies, ...)

- Since many problems are more political than technical, CMS has prepared a document to perform handshaking with HPC sites, and in order to
 - Explain our needs
 - Propose solutions (standard, ad-hoc)
 - Discuss out-of-the-box solutions for Future systems
 - Can it become the basis of a common one?

- CMS plans a (virtual) trip to visit all the HPC sites, and establish direct links

Tech DOC
Exec Summary / political introduction

Report on HPC resources integration at CMS

Introduction

High Performance Computing (HPC) systems are highly not standard facilities, and are custom-built having in mind use cases largely different from High Energy Physics (HEP) ones. The utilization of these system by HEP experiments is not trivial: each HPC center is different and, of course, this increases the level of complexity from the integration and operations perspectives.
Current understanding of resource needs for Phase II

- All, in all, starting from the factors 50-100x as previously mentioned, the efforts already put in place are starting to pay off.

- Last public version of our 2027 estimates cite projected needs for:
 - CPU: 44 MHS06
 - Disk: 2.2 EB
 - Tape: 3 EB
 - (with respect to 2019 pledges, these are 22x, 13x and 15x)

- .. with a storage decrease by 2x due the modellization of NanoAOD as a tool for 50% of the analyses, and thus reducing the needs to process and store on disk larger data formats.
What could CMS (and HEP) benefit from?

- **Stronger collaboration between experiments!**
 - We see HSF, WLCG, IRIS-HEP trying to gather forces
 - Most visible recent result is probably the adoption of Rucio by CMS

- **Fields where we see the possibility for joined efforts**
 - **Framework concepts** (if code is not possible): heterogeneous computing, multithreading, automatic code translations, ...
 - **Interfacing to HPCs**: definition of edge services, move the specific problems like networking a common one (handled by HTCondor / external services), common grants with centers
 - Can we set an experiment wide strategy? We delivered our view on that (HPC handshaking document)
 - **“Generic” ML tools**, like GANs for fast simulation
 - Which is the best place to work on that?
 - **Quantum computing R&D** (on the algorithmic side) -- at low pace but not to be neglected
 - Common strategy towards **generators**
 - This at least has started, but currently experiments’ view seem different
 - **More common solutions** adoption (and less mono-directional adoption)