
Dr Christopher Jones
HOW 2019
19 March 2019

Accelerator Integration in CMS

19/3/2019 C Jones | Accelerator Integration in CMS

Considerations for Heterogeneous Computing

Scheduling CPU & Accelerator Algorithms

Configuring Heterogeneous Jobs

�2

5/23/2018 C Jones | CMS Data Processing Framework Concurrency Experience�3

Scheduling CPU & Accelerator Algorithms

19/3/2019 C Jones | Accelerator Integration in CMS

Concurrent CPU/Non-CPU Processing

CMS data processing framework uses a mechanism to interact effectively with
non-cpu resources

Non-CPU algorithms are divided into 3 phases
CPU stage which acquires data and transfers to non-CPU resource
Non-CPU algorithm is then run
When finished, a publish step is run on the CPU to move data back to CPU memory

While non-CPU algorithm runs, the CPU is available for other algorithms

�4

19/3/2019 C Jones I Accelerator Integration in CMS

Setup

�5

TBB controls running modules
Can have concurrent processing of multiple
events

Have separate helper thread to control
GPU

Waits until enough work has been buffered
before running GPU kernel

MODULE
A

MODULE
A

MODULE
B

MODULE
B

MODULE
C

MODULE
C

Event Loop
1

Event Loop
2

Waiting To
Run

Running

GPU
Controlling

Thread

19/3/2019 C Jones I Accelerator Integration in CMS

Acquire

�6

Module acquires method called
Used to pull data from Event

Copies data to buffer
Includes a callback to start next phase of
module running MODULE

A
MODULE

A

MODULE
B

MODULE
B

MODULE
C

MODULE
C

Event Loop
1

Event Loop
2

Waiting To
Run

Running

GPU
Controlling

Thread 1 2

19/3/2019 C Jones I Accelerator Integration in CMS

External Work Starts

�7

GPU kernel is run
Data pulled from buffer

Next waiting module can run

MODULE
B

MODULE
B

MODULE
C

MODULE
C

Event Loop
1

Event Loop
2

Waiting To
Run

Running

GPU
Controlling

Thread 1 2

19/3/2019 C Jones I Accelerator Integration in CMS

External Work Finishes

�8

GPU results are copied to buffer

Callback puts Module back into waiting
queue

MODULE
B

MODULE
C

MODULE
C

Event Loop
1

Event Loop
2

Waiting To
Run

Running

GPU
Controlling

Thread 1 21 2

MODULE
A

MODULE
A

19/3/2019 C Jones I Accelerator Integration in CMS

Produce

�9

Produce method of module is called

Pull data from buffer

Data used to create objects to put into
Event

MODULE
C

MODULE
C

Event Loop
1

Event Loop
2

Waiting To
Run

Running

GPU
Controlling

Thread 1 2

MODULE
A (prod)

MODULE
A (prod)

19/3/2019 C Jones | Accelerator Integration in CMS

External Work in Practice

GPU
HLT base R&D have been using the facility
See Matti Kortelainen’s talk in this session

Remote FPGA
R&D project which uses remote (on or off site) FPGA for machine learning inference
See Kevin Pedro’s talk Wednesday in ‘Reconstruction and Software Triggers’

Geant V CMS Integration R&D
Control of thread passed to Geant V when new Event is ready
• Geant V is using TBB task to run its code
• This allows proper thread pool sharing with framework also using TBB tasks

When Geant V finishes an Event, control returns to framework
• The finish thread often different than the start thread

See Kevin Pedro’s talk Thursday in ‘Detector Simulation'

�10

19/3/2019 C Jones | Accelerator Integration in CMS

External Work and Event Batching

Framework supports running more concurrent events than threads
Normally not a useful configuration
• increases memory use
• does not increase event throughput

External Work modules can process events in batches
module waits to run external algorithm once it has acquired a certain number of events
Has been used in framework tests
Not being used by any R&D projects
• complicates module book-keeping

Some simple tests showed batching can decrease event throughput
Have to carefully balance
• per module speed improvements from batching
• possible lack of available tasks for CPU to run while accumulating a batch

�11

5/23/2018 C Jones | CMS Data Processing Framework Concurrency Experience�12

Configuring Heterogeneous Jobs

19/3/2019 C Jones | Accelerator Integration in CMS

Heterogeneous Configuration

Want jobs for a workflow to run at any site

Want same configuration for all jobs in a workflow
Be agnostic to the kind of hardware being used for a given job
Hash of configuration already used by framework to segregate data from different
workflows

Want to be able to keep CPU and Accelerator algorithms separate
No need to touch working code
The different hardware may want to group the work differently
• e.g. CPU might want to spread over 3 modules while GPU wants them combined to 1

Not precluding having CPU and Accelerator algorithm in same module either

Use provenance tracking to determine what technology was used
Framework tracks what data each module uses for each Event

�13

19/3/2019 C Jones | Accelerator Integration in CMS

SwitchProducer

SwitchProducer added to configuration
Allows specifying multiple modules associated to same module label
At runtime picks one to use based on available technologies

�14

foo = SwitchProducer(
 cpu = Producer(“FooProducer”,
 input = “hits”),
 gpu = Producer(“FooGPUProducer”,
 input = “raw”))

hits = Producer(“HitsProducer”,
 input = “raw”)

bar = Producer(“BarProducer”,
 input =“foo”)

bar

foo

raw

hits

cpu@foo gpu@foo

19/3/2019 C Jones | Accelerator Integration in CMS

Conclusion

CMS has a mechanism for integrating TBB and accelerators
Can support any conceivable hardware

Possible future changes only after CMS gains more practical experience

�15

5/23/2018 C Jones | CMS Data Processing Framework Concurrency Experience�16

Backup Slides

19/3/2019 C Jones | Accelerator Integration in CMS

Throughput Scaling Test

Approximate use of non-CPU resource
Separate helper thread which sleeps for a set amount of time
All waiting sleep requests handled concurrently
• thread sleeps only for the longest requested time, not the total requested time

Once sleeping, additional sleep requests will have to wait
Denoted by ‘External Work’

Simple CPU based algorithm for testing
algorithm sleeps for set amount of time

Require that two algorithms are needed to process each event

Test two different algorithm dependencies
The two algorithms are independent of each other
One algorithm depends on the results of the other algorithm

�17

19/3/2019 C Jones I Accelerator Integration in CMS

Expectations for Independent Algorithms

�18

A1 A2Event 1
A1 A2Event 2

A1 A’2Event 1
A1 A’2Event 2

A1

A2

Event 1

A1
A2

Event 2

A1

A’2

Event 1

A1

A’2

Event 2

threads = # concurrent events
both CPU algorithms take same time

threads = # concurrent events
1 algorithm is faster than other

threads = 2 * # concurrent events
both CPU algorithms take same time

threads = # concurrent events
1 CPU & 1 External Work algorithm

19/3/2019 C Jones | Accelerator Integration in CMS

Have two algorithms that can work in parallel on one event
Algorithms take exactly the same amount of time to process an event

One algorithm can be written to do external work
As fast as using two threads per event

�19

Independent Algorithm Measurements

Ev
en

t T
hr

ou
gh

pu
t (

ev
/s

)

0

20

40

60

80

Number of Concurrent Events
0 4 8 12 16

External Work
CPU only 2 threads/event
CPU only (fast algorithm)
CPU only

19/3/2019 C Jones | Accelerator Integration in CMS

Processing Graph

Stream ID
Denotes an independent event loop

Histogram colors
Purple: Work has been passed to the
external work controlling thread
• Between acquire and produce
• Does not mean the work is running

Green: a module is running on a CPU

�20

19/3/2019 C Jones | Accelerator Integration in CMS

Minimum Number of Events to Process

The external work thread can wait until a set number of events are ready to
process

Constants
16 concurrent events
16 threads

As minimum number of events approaches number of concurrent events the
throughput decreases

�21

Re
la

tiv
e

Ev
en

t T
hr

ou
gh

pu
t

0

0.2

0.4

0.6

0.8

1

Minimum Number of Events to
Process for External Work

0 4 8 12 16

19/3/2019 C Jones I Accelerator Integration in CMS

Expectations for Dependent Algorithms

�22

A1 A2Event 1
A1 A2Event 2

A1 A’2Event 1
A1 A’2Event 2

A1 A2Event 1

A1 A2Event 2

A1

A’2
Event 1

A1

A’2

Event 2

threads = # concurrent events
both CPU algorithms take same time

threads = # concurrent events
1 algorithm is faster than other

threads = 2 * # concurrent events
both CPU algorithms take same time
No benefit from extra threads

threads = # concurrent events
1 CPU & 1 External Work algorithm

19/3/2019 C Jones | Accelerator Integration in CMS

Event processing algorithms must run sequentially
Use of external work is faster than algorithms sequentially

not as fast as if second algorithm ran on CPU as fast as it can on external worker

�23

Dependent Algorithm Measurements

Ev
en

t T
hr

ou
gh

pu
t (

ev
/s

)

0

15

30

45

60

Number of Concurrent Events
0 4 8 12 16

External Work
CPU only (fast algorithm)
CPU only

19/3/2019 C Jones | Accelerator Integration in CMS

External Work and the CPU module have the same running times
Note the scale change

�24

Dependent Algorithm Processing Graphs

19/3/2019 C Jones | Accelerator Integration in CMS

Can only process 1 work chunk at a time
an event must wait for its turn if it missed the most recent start of a chunk
e.g. See Event 3

External work busy for the longest event time
events with shorter processing time must still wait for the longer time
e.g. see Event 2

�25

Cross Event Synchronization
External Worker

Event 1

Event 2

Event 3

Key
Opaque: Time spent in algorithm/External worker
Semi transparent: amount of time to process data in the External Worker

Time

19/3/2019 C Jones | Accelerator Integration in CMS

Number of Concurrent Events > Number of Threads

Use 16 threads

Require external work to
only wait for 1 event before
processing

With enough concurrent
events, can get same
result as if the external
work module was not in the
job

�26

Event Throughput vs Concurrent Events for
External Work with 16 Threads

Ev
en

t T
hr

ou
gh

pu
t (

ev
/s

)

0

20

40

60

80

Number of Concurrent Events
16 20 24 28 32

External Work
Dropped Module

19/3/2019 C Jones | Accelerator Integration in CMS

Conclusion

CMS has a mechanism for integrating TBB and accelerators

Exact event throughput benefits dependent on scheduling work to accelerator
Waiting for enough events to accumulate can decrease throughput

The more intra-event parallelism improves event throughput
Can schedule work on CPU and accelerator at the same time

May be able to increase event throughput at the cost of extra memory
allow number of concurrent events to be greater than the number of CPU threads

�27

