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We Need More Speed ...
•Increase of amount of LHC data 
-Run1+Run2: ~150fb-1 up to 2018 
-And more: 300fb-1 until 2022, 3000fb-1 until 2035 
-Huge amount of simulation data is necessary for 

physics analysis to keep reliability of physics 
analysis results.
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MadGraph5_aMC@NLO
•MadGraph is a general framework for 
computations of cross sections and generation 
of events of various physics processes at 
NLO, including new physics, and is widely used 
in HEP physics analysis. 

•Based on the system many useful tools are 
developed. 

•Improvement of its performance by HPC 
should be essential to keep the reliability of 
physics results with “big data” analysis.
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GFLOP/s at Base Clock
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History
•Since the beginning of 2008 with close 
collaboration with the MadGraph group we 
have been working on the development of 
parallel codes on GPU to improve 
performance of event generation softwares. 

•First we started testing helicity amplitude 
codes (HELAS in FORTRAN) on GPU 
(corresponding codes: HEGET in CUDA) and 
check results and performance.
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History
•Basic tests of HEGET functions were done 
with the QED (n-photon), QCD (n-jet) and 
more general SM processes with massive 
particles. 

•Test with MC integration is used in the 
paper for SM processes. VEGAS/BASES* 
(MC integration) and SPRING* (event 
generation based on the integration) 
packages for GPU are developed. 

*S.Kawabata,Comput.Phys.Commun.41(1986)127.
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For improvement of performance
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•Do in parallel as much as possible: 
the gain of performance depends on the 
fraction of parallelizable part. 

•Fill multiprocessors of GPU as many as 
possible: 
try to keep the fraction of processors not in 
use as small as possible. 

•Efforts to develop new algorithms optimized to 
GPU is important to achieve further gain in 
performance.
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MadGraph and GPU

Simplified view of event generation with 
MadGraph: 
1. Generation of amplitude program of various 

physics processes: helicity amplitude code 
and amplitude program. 

2. Multi-channel integration of multi-physics 
processes 

3. Event generation based on the integrated 
results with multi physics processes.
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Amplitude Program

•Helicity amplitude code generated by “aloha”: 
the functionality to generate CUDA code is 
already included (not in release version) 
thanks to the MadGraph team.  Need 
finalization. 

•Amplitude function (matrix.f) can be easily 
converted to CUDA or directly generated in 
CUDA format.
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Monte Carlo integration on GPU
Multi-channel integration of multi-physics 
subprocesses 
•most time-consuming part of integration is 
already available on GPU: VEGAS/BASES. 

•multi-channel integration can be fitted to 
GPU more efficiently:  
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and such that the peak structure of each fi can be efficiently mapped by a single channel
gi. Then, the integration of f reduces to:

I =
∫

dΦ⃗f(Φ⃗) =
n∑

i=1

∫
dΦ⃗ gi(Φ⃗)

fi(Φ⃗)
gi(Φ⃗)

=
n∑

i=1

Ii , (2.3)

i.e., to a sum of n independent integrations. In so doing a single channel gi is associated
to each integration Ii and no set of weights αi (and related functions g(−→Φ ) and w(−→Φ ))
need to be introduced. For a generic integration problem, the identification of such a basis
might be too difficult and the above method be simply not viable. However, in the case at
hand, a natural decomposition arises from the physical content of the process. We propose
to use the following basis:

fi =
|Ai|2∑
i |Ai|2

|Atot|2 , (2.4)

where Ai is the amplitude corresponding to a single Feynman diagram and Atot =
∑

i Ai

is the total amplitude. It is clear that each fi in eq. (2.4) satisfies the conditions (2.2)
and form a “complete” basis.4 More importantly, the peak structure of each fi is the
same as of the single squared amplitude |Ai|2. Finding the suitable mapping gi is therefore
straightforward, since it can be derived from the propagator structure of the corresponding
Feynman diagram. We will refer to the above algorithm as Single-Diagram-Enhanced
multi-channel integration.

Decomposing the integration of the amplitude into n independent integrations has
immediate advantages. First, in contrast to the standard multi-channel integration, the
evaluation of the weight in one channel does not require the computation of the others.
This entails that, from the statistics point of view, in the Single-Diagram-Enhanced inte-
gration method the complexity of the computation does not increase with the number of
channels.

Second, the Single-Diagram-Enhanced integration is parallel in nature. Integrations in
each channel can be performed by using different resources and the results combined only
at the very end. Considering the latest developments in this field, such as the availability
of PC farms at low cost, we reckon this as an alluring property of this approach.

A third useful aspect of our method is that, given a target accuracy of the integration,
it is trivial to reweight the channels so that those whose contributions to the total result
is small (large) are evaluated with a smaller (greater) number of Monte Carlo points. For
instance, in our implementation, first we perfom a run with a minimum fixed number of
points for each channel to obtain an estimate of the Ii (and therefore also of the total
integral I). Then, when necessary, we improve the accuracy of a single integration based
on how large is its contribution to the final result, using the ratio Ii/I as an indicator. This
realizes in practice the desirable property that the computational time spent on a single
channel should be proportional to its relevance to the final result.

4Eq. (2.4) is analogous to the procedure suggested by Odagiri [14] to extract the leading color behaviour

of QCD amplitudes.
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Event Generation on GPU
•Event generation of multi-physics processes 

•SPRING generates unweighted events based 
on BASES integration results with improved 
and optimized algorithm. 
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f(x) Reject

Accept

•“Unweighting” requires 
“acceptance-rejection”: 
-> the most inefficient 
cell determines the 
total performance.
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SPRING on GPU (gSPRING)
•Allocate event generation at phase space 
points to processors that take care of 
generation of one event.
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Itr#:

#1 ••••e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

✕ ○ ○ ✕ ○ ○ ○ ○✕ ✕ ✕

e1 e1 e1 e4 e5 e5 e7 e7 e9 e9 e11 e11#2

••••e1 e1 e1 e4 e4 e4 e4 e4 e4 e4 e4 e4#3

✕

✕ ✕ ✕ ✕ ○✕ ○ ✕ ○ ○✕ ✕

Processors

Accept/Reject

Reassign processors
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Titan C2075 GTX580 GTX285 GTX280 9800GTX

CUDA cores 2688 448 512 240 ← 128

Global Memory 6.1GB 5.4GB 1.5GB 2GB 1GB 500MB

Constant Memory 64KB 64KB 64KB 64KB ← 64KB

Shared Memory/block 48KB 48KB 48KB 16KB ← 16KB

Registers/block 65536 32768 32768 16384 ← 8192

Warp Size 32 32 32 32 ← 32

Clock Rate 0.88GHz 1.15GHz 1.54GHz 1.30GHz ← 1.67GHz

Announced 2013 2011 2010 2009 2008

Our GPU Environment
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• Code development: NVDIA GPUs + CUDA 

• GTX Titan: Peak floating point performance 
  4.5TFLOPS (single), max. 1.3TFLOPS (double) 

• cf. TESLA V100: 5120 CUDA cores, 7TFLOPS (double)
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Speed-up with GPU
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MadGraph on GPU
•Even though performance related parts of 
the system, “MC integration and event 
generation”, are available on GPU, still more 
developments are necessary, especially for 
the handling multi-physics process 
generations. 

•We will first accomplish efficient multi-
channel integration of physics process. 

•Multi-GPU and multi-task should be taken 
into account.
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Personal Hope
•Not only for HLT and pattern recognitions 
performance improvements of software for 
offline analysis by HPC is necessary for 
coming huge amount of data. 

•Other than event generations detector 
simulations (full and fast) and user analysis 
environment (ex.ROOT) are good candidate:  
we tried to run “PGS”, fast simulation 
program included in MadGraph, on GPU and 
obtained speed-up of roughly one order. 

•Performance of GPU hardware is rapidly 
evolving!
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