
MadGraph on GPU

Junichi Kanzaki (KEK)

HOW2019
@ THOMAS JEFFERSON NATIONAL

ACCELERATOR FACILITY

March 19, 2019

Presented by J. Kanzaki at HOW2019 in March 19, 2019

We Need More Speed ...
•Increase of amount of LHC data
-Run1+Run2: ~150fb-1 up to 2018
-And more: 300fb-1 until 2022, 3000fb-1 until 2035
-Huge amount of simulation data is necessary for

physics analysis to keep reliability of physics
analysis results.

 2

Presented by J. Kanzaki at HOW2019 in March 19, 2019

MadGraph5_aMC@NLO
•MadGraph is a general framework for
computations of cross sections and generation
of events of various physics processes at
NLO, including new physics, and is widely used
in HEP physics analysis.

•Based on the system many useful tools are
developed.

•Improvement of its performance by HPC
should be essential to keep the reliability of
physics results with “big data” analysis.

 3

Presented by J. Kanzaki at HOW2019 in March 19, 2019

GFLOP/s at Base Clock

 4

NVIDIA GPU single

NVIDIA GPU double

Intel CPU single

Intel CPU double
2003 2005 2007 2009 2011 2013 2015

10000

5000

V100 (double)

GTX Titan (double)
TESLA C2075 (double)

Presented by J. Kanzaki at HOW2019 in March 19, 2019

History
•Since the beginning of 2008 with close
collaboration with the MadGraph group we
have been working on the development of
parallel codes on GPU to improve
performance of event generation softwares.

•First we started testing helicity amplitude
codes (HELAS in FORTRAN) on GPU
(corresponding codes: HEGET in CUDA) and
check results and performance.

 5

Presented by J. Kanzaki at HOW2019 in March 19, 2019

History
•Basic tests of HEGET functions were done
with the QED (n-photon), QCD (n-jet) and
more general SM processes with massive
particles.

•Test with MC integration is used in the
paper for SM processes. VEGAS/BASES*
(MC integration) and SPRING* (event
generation based on the integration)
packages for GPU are developed.

*S.Kawabata,Comput.Phys.Commun.41(1986)127.

 6

Presented by J. Kanzaki at HOW2019 in March 19, 2019

Bibliography
•QED: K. Hagiwara, J. Kanzaki, N. Okamura, D.

Rainwater and T. Stelzer, Eur. Phys. J. C66 (2010)
477, e-print arXiv:0908.4403.

•QCD: K. Hagiwara, J. Kanzaki, N. Okamura, D.
Rainwater and T. Stelzer, Eur. Phys. J. C70 (2010)
513, e-print arXiv:0909.5257.

•MC integration (VEGAS & BASES): J. Kanzaki, Eur.
Phys. J. C71 (2011) 1559, e-print arXiv:
1010.2107.

•SM: K. Hagiwara, J. Kanzaki, Q. Li, N. Okamura,
T. Stelzer, Eur.Phys.J. C73 (2013) 2608 (2013), e-
print arXiv:1305.0708v2.

 7

http://arxiv.org/abs/0908.4403v2
http://arxiv.org/abs/0909.5257v1
http://arxiv.org/abs/1010.2107v1
http://arxiv.org/abs/1010.2107v1
http://arxiv.org/abs/1305.0708v2

Presented by J. Kanzaki at HOW2019 in March 19, 2019

For improvement of performance

 8

•Do in parallel as much as possible: 
the gain of performance depends on the
fraction of parallelizable part.

•Fill multiprocessors of GPU as many as
possible: 
try to keep the fraction of processors not in
use as small as possible.

•Efforts to develop new algorithms optimized to
GPU is important to achieve further gain in
performance.

Presented by J. Kanzaki at HOW2019 in March 19, 2019

MadGraph and GPU

Simplified view of event generation with
MadGraph:
1. Generation of amplitude program of various

physics processes: helicity amplitude code
and amplitude program.

2. Multi-channel integration of multi-physics
processes

3. Event generation based on the integrated
results with multi physics processes.

 9

Presented by J. Kanzaki at HOW2019 in March 19, 2019

Amplitude Program

•Helicity amplitude code generated by “aloha”: 
the functionality to generate CUDA code is
already included (not in release version)
thanks to the MadGraph team. Need
finalization.

•Amplitude function (matrix.f) can be easily
converted to CUDA or directly generated in
CUDA format.

 10

Presented by J. Kanzaki at HOW2019 in March 19, 2019

Monte Carlo integration on GPU
Multi-channel integration of multi-physics
subprocesses
•most time-consuming part of integration is
already available on GPU: VEGAS/BASES.

•multi-channel integration can be fitted to
GPU more efficiently:

 11

JHEP02(2003)027

and such that the peak structure of each fi can be efficiently mapped by a single channel
gi. Then, the integration of f reduces to:

I =
∫

dΦ⃗f(Φ⃗) =
n∑

i=1

∫
dΦ⃗ gi(Φ⃗)

fi(Φ⃗)
gi(Φ⃗)

=
n∑

i=1

Ii , (2.3)

i.e., to a sum of n independent integrations. In so doing a single channel gi is associated
to each integration Ii and no set of weights αi (and related functions g(−→Φ) and w(−→Φ))
need to be introduced. For a generic integration problem, the identification of such a basis
might be too difficult and the above method be simply not viable. However, in the case at
hand, a natural decomposition arises from the physical content of the process. We propose
to use the following basis:

fi =
|Ai|2∑
i |Ai|2

|Atot|2 , (2.4)

where Ai is the amplitude corresponding to a single Feynman diagram and Atot =
∑

i Ai

is the total amplitude. It is clear that each fi in eq. (2.4) satisfies the conditions (2.2)
and form a “complete” basis.4 More importantly, the peak structure of each fi is the
same as of the single squared amplitude |Ai|2. Finding the suitable mapping gi is therefore
straightforward, since it can be derived from the propagator structure of the corresponding
Feynman diagram. We will refer to the above algorithm as Single-Diagram-Enhanced
multi-channel integration.

Decomposing the integration of the amplitude into n independent integrations has
immediate advantages. First, in contrast to the standard multi-channel integration, the
evaluation of the weight in one channel does not require the computation of the others.
This entails that, from the statistics point of view, in the Single-Diagram-Enhanced inte-
gration method the complexity of the computation does not increase with the number of
channels.

Second, the Single-Diagram-Enhanced integration is parallel in nature. Integrations in
each channel can be performed by using different resources and the results combined only
at the very end. Considering the latest developments in this field, such as the availability
of PC farms at low cost, we reckon this as an alluring property of this approach.

A third useful aspect of our method is that, given a target accuracy of the integration,
it is trivial to reweight the channels so that those whose contributions to the total result
is small (large) are evaluated with a smaller (greater) number of Monte Carlo points. For
instance, in our implementation, first we perfom a run with a minimum fixed number of
points for each channel to obtain an estimate of the Ii (and therefore also of the total
integral I). Then, when necessary, we improve the accuracy of a single integration based
on how large is its contribution to the final result, using the ratio Ii/I as an indicator. This
realizes in practice the desirable property that the computational time spent on a single
channel should be proportional to its relevance to the final result.

4Eq. (2.4) is analogous to the procedure suggested by Odagiri [14] to extract the leading color behaviour

of QCD amplitudes.

– 4 –

JHEP02(2003)027

and such that the peak structure of each fi can be efficiently mapped by a single channel
gi. Then, the integration of f reduces to:

I =
∫

dΦ⃗f(Φ⃗) =
n∑

i=1

∫
dΦ⃗ gi(Φ⃗)

fi(Φ⃗)
gi(Φ⃗)

=
n∑

i=1

Ii , (2.3)

i.e., to a sum of n independent integrations. In so doing a single channel gi is associated
to each integration Ii and no set of weights αi (and related functions g(−→Φ) and w(−→Φ))
need to be introduced. For a generic integration problem, the identification of such a basis
might be too difficult and the above method be simply not viable. However, in the case at
hand, a natural decomposition arises from the physical content of the process. We propose
to use the following basis:

fi =
|Ai|2∑
i |Ai|2

|Atot|2 , (2.4)

where Ai is the amplitude corresponding to a single Feynman diagram and Atot =
∑

i Ai

is the total amplitude. It is clear that each fi in eq. (2.4) satisfies the conditions (2.2)
and form a “complete” basis.4 More importantly, the peak structure of each fi is the
same as of the single squared amplitude |Ai|2. Finding the suitable mapping gi is therefore
straightforward, since it can be derived from the propagator structure of the corresponding
Feynman diagram. We will refer to the above algorithm as Single-Diagram-Enhanced
multi-channel integration.

Decomposing the integration of the amplitude into n independent integrations has
immediate advantages. First, in contrast to the standard multi-channel integration, the
evaluation of the weight in one channel does not require the computation of the others.
This entails that, from the statistics point of view, in the Single-Diagram-Enhanced inte-
gration method the complexity of the computation does not increase with the number of
channels.

Second, the Single-Diagram-Enhanced integration is parallel in nature. Integrations in
each channel can be performed by using different resources and the results combined only
at the very end. Considering the latest developments in this field, such as the availability
of PC farms at low cost, we reckon this as an alluring property of this approach.

A third useful aspect of our method is that, given a target accuracy of the integration,
it is trivial to reweight the channels so that those whose contributions to the total result
is small (large) are evaluated with a smaller (greater) number of Monte Carlo points. For
instance, in our implementation, first we perfom a run with a minimum fixed number of
points for each channel to obtain an estimate of the Ii (and therefore also of the total
integral I). Then, when necessary, we improve the accuracy of a single integration based
on how large is its contribution to the final result, using the ratio Ii/I as an indicator. This
realizes in practice the desirable property that the computational time spent on a single
channel should be proportional to its relevance to the final result.

4Eq. (2.4) is analogous to the procedure suggested by Odagiri [14] to extract the leading color behaviour

of QCD amplitudes.

– 4 –

Presented by J. Kanzaki at HOW2019 in March 19, 2019

Event Generation on GPU
•Event generation of multi-physics processes

•SPRING generates unweighted events based
on BASES integration results with improved
and optimized algorithm.

 12

f(x) Reject

Accept

•“Unweighting” requires
“acceptance-rejection”: 
-> the most inefficient
cell determines the
total performance.

Presented by J. Kanzaki at HOW2019 in March 19, 2019

SPRING on GPU (gSPRING)
•Allocate event generation at phase space
points to processors that take care of
generation of one event.

 13

Itr#:

#1 ••••e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

✕ ○ ○ ✕ ○ ○ ○ ○✕ ✕ ✕

e1 e1 e1 e4 e5 e5 e7 e7 e9 e9 e11 e11#2

••••e1 e1 e1 e4 e4 e4 e4 e4 e4 e4 e4 e4#3

✕

✕ ✕ ✕ ✕ ○✕ ○ ✕ ○ ○✕ ✕

Processors

Accept/Reject

Reassign processors

Presented by J. Kanzaki at HOW2019 in March 19, 2019

Titan C2075 GTX580 GTX285 GTX280 9800GTX

CUDA cores 2688 448 512 240 ← 128

Global Memory 6.1GB 5.4GB 1.5GB 2GB 1GB 500MB

Constant Memory 64KB 64KB 64KB 64KB ← 64KB

Shared Memory/block 48KB 48KB 48KB 16KB ← 16KB

Registers/block 65536 32768 32768 16384 ← 8192

Warp Size 32 32 32 32 ← 32

Clock Rate 0.88GHz 1.15GHz 1.54GHz 1.30GHz ← 1.67GHz

Announced 2013 2011 2010 2009 2008

Our GPU Environment

 14

• Code development: NVDIA GPUs + CUDA

• GTX Titan: Peak floating point performance 
 4.5TFLOPS (single), max. 1.3TFLOPS (double)

• cf. TESLA V100: 5120 CUDA cores, 7TFLOPS (double)

Presented by J. Kanzaki at HOW2019 in March 19, 2019

Speed-up with GPU

 15

Number of Gluons in Final State
0 1 2 3

R
at

io
 o

f T
ot

al
 P

ro
ce

ss
 T

im
e

0

100

200

300

Process Time Ratio
 + n-gluons+ W→ du Very preliminary

BASES: CPU / Titan
BASES: CPU / C2075
SPRING: CPU / Titan
SPRING: CPU / C2075

Comparison of GTX Titan and TESLA C2075 with
single core CPU (u+dx -> W+ + gluons).

Sp
ee

d-
up

Presented by J. Kanzaki at HOW2019 in March 19, 2019

MadGraph on GPU
•Even though performance related parts of
the system, “MC integration and event
generation”, are available on GPU, still more
developments are necessary, especially for
the handling multi-physics process
generations.

•We will first accomplish efficient multi-
channel integration of physics process.

•Multi-GPU and multi-task should be taken
into account.

 16

Presented by J. Kanzaki at HOW2019 in March 19, 2019

Personal Hope
•Not only for HLT and pattern recognitions
performance improvements of software for
offline analysis by HPC is necessary for
coming huge amount of data.

•Other than event generations detector
simulations (full and fast) and user analysis
environment (ex.ROOT) are good candidate:  
we tried to run “PGS”, fast simulation
program included in MadGraph, on GPU and
obtained speed-up of roughly one order.

•Performance of GPU hardware is rapidly
evolving!

 17

