

Trigger Level Analysis in CMS During Run 2 and Beyond

HOW2019

David Sperka (Boston University)

On behalf of the CMS collaboration

CMS Trigger System

- CMS has a two level trigger system to select the interesting collision events
 - Level 1 (L1) trigger: algorithms running on FPGA in custom electronics boards
 - Coarse information, no tracking information
 - Hard limits on latency (on-detector buffer size) and total accept rate (readout electronics design)
 - High Level Trigger (HLT): algorithms running on commercial CPUs
 - Full readout of the CMS detector, including the tracker
 - Hard limit on latency (CPU power) and total bandwidth (transfer data from online file system to storage)
 - No hard limit on the total rate

~30 MHz

CMS "Data Parking"

- We can take a lot more than 1 KHz of data, e.g. in 2018 for BPH
 - → If you are fine with waiting longer to have it fully reconstructed
 - → Not the main point of this talk, focus on another strategy...

Trigger Level Analysis in CMS

CMS "Data Scouting"

- Traditional trigger algorithms usually require high $p_{_{\rm T}}$ particles to reduce the event rate, and then readout the full event information
- Need to reduce the event size to collect events at a higher rate
 - $\boldsymbol{\textbf{\textbf{+}}}$ Physics objects produced by the HLT as the final objects
 - CaloScouting (vertices, muons, calo based jets and MET),
 - \rightarrow limited by L1 rate
 - PF Scouting (vertices, PF muons, PF jets and MET, PF cands.),
 → limited by HLT CPU time

Stream	Rate (Hz)	Event Size	Bandwidth (MB/s)
PhysicsMuons	420	$0.86 \mathrm{MB}$	360
PhysicsHadronsTaus 1 1 2	345	$0.87 \mathrm{MB}$	300
ScoutingCaloMuon	4580	8.9 KB	40
$\operatorname{ScoutingPF}$	1380	14.8 KB	20

Selected CMS stream rate, event size, and bandwidth at the beginning of LHC Fill 7334 (23 Oct. 2018, L \approx 1.5 \times 10³⁴cm⁻²s⁻¹)

Why go to lower p_{T} ?

- We expected to find new physics at the TeV scale, but haven't found it so far
- Eventually we will have diminishing returns on looking at very high $p_{\scriptscriptstyle T}$ at the LHC
- The LHC experiments are the only active collider experiments which can do direct searches for new physics above ~12 GeV, maybe we have missed something
- Several BSM models do not prefer any specific mass scale, just need weaker couplings for lower masses
 - → Dark matter / Dark sectors...
 - → Axion like particles...
 - → Models for flavor anomalies...

- CMS-EXO-16-056
- Search for dijet resonances using the CaloScouting stream
- The scouting trigger is fully efficiency for a dijet mass of 490 GeV
 - → Almost 500 GeV lower than the the traditional trigger

- Spatially close jets are combined into "wide jets" to build the dijet mass
- "Scouting" jets are calibrated to give the same response as the "offline" jets using dijet balancing technique
- Resolution about ~18% worse in scouting for a dijet mass of 2 TeV

Normalized yield / TeV

CMS-EXO-16-056

CMS-EXO-16-056

• The low dijet mass spectrum is fit with a 5 parameter function motivated by QCD calculations:

$$\frac{d\sigma}{dm_{jj}} = \frac{P_0(1-x)^{P_1}}{x^{P_2+P_3\ln(x)+P_4\ln^2(x)}}$$

- Dominant sources of uncertainty are similar to the offline analysis:
 - → Jet energy scale and resolution
 - → Luminosity
 - → Acceptance
 - → Background shape

CMS-EXO-16-056

- No evidence of a new resonance, constraints are placed on a wide variety of new physics models
 - Scouting analysis pushing the limit on the coupling strength, which is essentially a free parameter in many models

Three-jet Resonance Search

CMS-EXO-17-030

- BSM models such as heavy color octets and RPV SUSY predict a pair produced resonance decaying to 3 jets
 - → Offline analysis using an HT requirement of 900 GeV using jets with p_T > 50 GeV, at least 6 jets
 - → PF Scouting analysis uses an HT requirement of 650 GeV using jets with p_T
 > 40 GeV, at least 6 jets
 - PF needed to reduce combinatoric background from pileup
- Additional selections are applied to reduce QCD background

Region	Gluino mass rango	Jet <i>p</i> _T	H_{T}	sixth jet $p_{\rm T}$	$D^2_{[(6,3)+(3,2)]}$	A_m	Δ	$D^{2}_{[3,2]}$
			(= 0.0.1)					
1	200–400 GeV	>30 GeV	>650 GeV	>40 GeV	<1.25	< 0.25	>250GeV	< 0.05
2	400–700 GeV	>30 GeV	>650 GeV	>50 GeV	<1.00	< 0.175	>180 GeV	< 0.175
3	700-1200 GeV	> 50 GeV	>900 GeV	>125 GeV	<0.9	< 0.15	>20 GeV	< 0.2
4	1200-2000 GeV	> 50 GeV	>900 GeV	>175 GeV	<0.75	< 0.15	>-120 GeV	< 0.25

Three-jet Resonance Search

CMS-EXO-17-030

- QCD background dominates for high mass regions, but top pair production is also considered in the lowest mass region
- Scale and resolution corrections are derived from the all hadronic top quark decays and used to correct the gluino simulation

2200

Three-jet Resonance Search CMS-EXO-17-030

 No significant excess observed, results interpreted in the context of gluino pair production with RPV decay

Motivation for Low Mass Dimuon Search

- "Dark photons" arise in many models with hidden sectors
- Rich experimental program covering many order of magnitude in mass and coupling strength
- Couple to electromagnetic charge, dimuon final state promising at colliders
 - → Standard dimuon thresholds are 17/8 GeV at HLT

arxiv:1412.0018

Scouting Dimuon Mass Distribution

• CMS collected dimuon events using a collection of L1 muon triggers, and minimal requirements at the HLT level:

Scouting Dimuon Mass Distribution

• CMS collected dimuon events using a collection of L1 muon triggers, and minimal requirements at the HLT level:

Scouting Dimuon Mass Distribution

 CMS collected dimuon events using a collection of L1 muon triggers, and minimal requirements at the HLT level:

 Finalizing efficiency measurements, background estimation, and statistical analysis...

Possible Extensions for HLT Scouting

- For Run 3, plan to extend the coverage further to other final states
 PF Scouting on all L1 events? ~400 ms / event, probably unrealistic...
- More realistic to target specific scenarios such as search diphoton resonances to look for low mass scalars or axion like particles
 - → Double EG Thresholds 22 / 12 GeV (L1) and 30 / 18 GeV (HLT)

Possible Extensions: 40 MHz Scouting

- For HL-LHC, CMS will incorporate tracking into the L1 trigger
 - → Muon momentum resolution comparable to today's HLT (few %)
- In addition, several detectors (Barrel Calorimeter, Barrel Muon chambers) will have streaming readout (full granularity for each BX)
- Demonstrator systems currently being developed (DT, uGMT)

Picture Credit: Emilio Meschi

Trigger Level Analysis in CMS

HOW 2019

Physics Case for 40 MHz Scouting ?

- Such a system would benefit analyses which are limited by the Level 1 Trigger rate budget, or possibly latency constraints
- And which do not suffer from resolution or background limitations
 - Not entirely trivial boundary conditions, since the upgraded trigger is very powerful
- Work ongoing to study in detail different signatures, but some being considered are:
 - → Dark photons (pp → A → $\mu\mu$ or D* → D⁰A,A → $\ell\ell$)
 - $\textbf{\textbf{+}} H \rightarrow \Phi \gamma, \ \rho \gamma$
 - → Low mass W' → $\tau\nu$
 - Hidden sector hadronic physics

Summary

- Data Scouting is by now a well established technique in CMS
- Several publications based on hadronic signatures, and first results in dimuon channel being finalized
- For Run 3 and HL-LHC, the program will be expanded creating new possibilities for discovery

