Performance monitors and profilers

Scott Snyder
Brookhaven National Laboratory, Upton, NY, USA

Mar 21, 2019
HOW?2019, JLab

§ Scott Snyder (BNL) : Performance monitors and profilers Mar 21, 2019

1/12

Introduction

Questions like
@ How can | make my code run faster?
@ How can | reduce the amount of memory my code needs?
@ Is my code making good use of capabilities of the hardware?

are usually best addressed using tools that can measure the performance
of the code.

Measuring resources required by individual fragments of code is called
profiling.

§ Scott Snyder (BNL) : Performance monitors and profilers Mar 21, 2019 2 /12

Types of profiling
Statistical sampling

Interrupt program periodically with a timer. Record/histogram the
program counter at each interrupt.
[vtune, oprofile, etc.]

v

Modern CPUs maintain a variety of performance counters: instructions
executed, cache misses, etc. Can collect detailed information with low
overhead.

Often require root privileges to access.

[vtune, oprofile, etc.]

Simulate program execution on a virtual machine, and collect performance
information from the model machine.
Slow. [valgrind (sort of...)]

v

§ Scott Snyder (BNL) : Performance monitors and profilers Mar 21, 2019 3/12

Types of profiling

Explicitly add calls to measure resources used by a particular piece of code.
Frameworks generally have support for, eg, measuring time and memory
used on a per-algorithm basis.

Automatic instrumentation

Code is transformed automatically to include performance analysis.
Can be done by the compiler, or by a separate tool.

Can also intercept and instrument library calls to monitor, eg, memory
usage.

[gprof, valgrind, etc.]

v

Allows program to log interesting events as a function of time for later
analysis. May also be useful for debugging.
[vtune, perf, tau]

v

§ Scott Snyder (BNL) : Performance monitors and profilers Mar 21, 2019 4 /12

Further considerations

Some profilers collect only the program counter. But if a program is
spending a lot of time in, say, memcpy, then you want to know which
functions are making most of the calls. Profilers that collect call stack
information can help with this.

Different tools may collect the stack to different depths, and may also
differ in handling cycles int the call graph.

v

Collecting data will add to runtime and memory requirements. Can vary
from ~ negligible to over an order of magnitude.

Bias
The act of collecting performance data can bias the performance results.

Some tools try to correct for this, more or less successfully. Somewhat
correlated with overhead.

v

§ Scott Snyder (BNL) : Performance monitors and profilers Mar 21, 2019 5/12

Further considerations

Tools relying on statistical sampling need the program to run for long
enough to accumulate sufficient statistics. Tools relying on
instrumentation may be fine with shorter runs.

It is often useful to be able to restrict data collection to some phases of
the program — for example, collect data only for event processing but not
for initialization for finalization.

Can be either interactive or programmatic. No real standard on how to do
this.

User interface

What tools are available to inspect and analyze the results?
Can vary from a simple textual dump to an elaborate GUI.

$i Scott Snyder (BNL) : Mar 21, 2019 6 /12

Intel VTune

Comprehensive; low-overhead.

(Usually) works well for very large
applications.

Timeline analysis.

@ Proprietary.

@ Need root access to go much
beyond basic statistical sampling.

@ Sometimes crashes for complicated
applications.

Support for finding issues due to
locking, etc. J

[Hotspots Hoispots by CPU Utization =

Analysis Configuration Collection Log _ Summary | Sottoup Caller/Callee Top-down Tree Platform

INTELVTUNE AMPLIFIER 2013

Grouping | Function / Call Stack.

3)[x]0)[t)| [crurme

Fancton / Cat Sack__| GPUTme v wodue |

Functon (Ful

jmng‘ Tot120 5 solocted sk

CaloTopoClusterMaker x| 33.247s IbCal... CaloTopoClusterMaker: execute(EveniContext consta, Datay 9.5% (13715 of 14.3885)
CaloTopoClusterSpltter-ey 30.109s IbCal... Calo , Datal [unknown source fie]
__pihread_mutex_lock 27.256s lbpth... __pthread_mutex_lock fitemalloc_minimal.s01TC
pihread_mutex_unlock 211115 libpth...| pihread_mutex_unlock libtmalloc_minimal.sotcmalloc

15.033s IbCal. consté, Df~ prcmalioc_minimal sotcraloc

14,3885 libcs...
12,9555 Ibcal.

» madvise madvise

ook 1LookUpTable(void)

libtemalloc_minimal sotcralloc

11,9255 libzs.
9.4505 libea,

inflte_fast inflte_fast

fibtemalloc_minimal.sotcmaloc. Ce
libtemalloc_minimal.sotcmalloc

(788 Scheduer Internals] 9.039s lbtbb.
D]

@

thbinternal-allocate_root_proxy -allocate(unsigned long)
I

1 | fibtemalloc_minimal.sokcrmalloc
<] itemalloc_minimal sotcmaloc
D)_Libtemaliog,_minimalsotigmallog. 1

1505

O 4 os 508 ’

f f bt
e Worker Thiead (TID: 1.

788 Worker Thread (ID: 1.

Thiead

TBB Worker Thread (TD. 1.
TBB Worker Thread (TID: 1.
ahena py (1D: 9222)

Py Utizaton

_#0 o (fead

& ERuning

S| O =siow

 CPU Ltilzation

FLTER 100.0%

Scott Snyder (BNL)

3¢ | anyproce o || Thiead [any threa < | Module [any Module

Performance monitors and profilers

< anyutiii > | User functions < || Show inline < | Functions of *

Mar 21, 2019 7 /12

Valgrind
@ Open source; available in most
linux distributions.
@ Very robust.
@ No root privs needed.

@ Nice GUI for examining results
(kcachegrind).

@ Also a variety of runtime checking.

Dynamically transforms machine code to
add instrumentation.

W

@ Large overhead (10-50x).

@ Results sometimes significantly
biased.

§ Scott Snyder (BNL)

Performance monitors and profilers Mar 21, 2019 8/ 1

2

TAU (Tuning and analysis utilities)

@ Very comprehensive: statistical
counters, performance counters,
optional instrumentation, GPUs,
MPI, etc. Muiltilanguage!

@ Open source.

@ No root privs needed.

@ Developers eager for collaboration.

See backup for further details.

sea) AU spplication
i —— NV

@ Not so easy to figure out how to
use.

@ Some small (fixable) bugs on large
applications.

@ Analysis tools confusing. Some
parts, like call graph display, are
simply useless for large
applications.

SAMPLE] _Ibc_poll [{ierp.c} (03]
. Dafaveclor=AOD: Calotluster v, DalaVector<siD:Particle, Datavodsl datz
avPLE] .

)
(SAMPLE) _pthread_mutex Jock Internal [{interp.c} {0}
+ o
AMPLE] _pthread mutex urlock intemal | {rterp.c} (011
T2, DataVactoreshOD, CaloCluster i, Oataveclor=xaoDPartcls Dataodel del
consts. 0ar

L)

< 1o
1] TAU appiiation = [SAMPLE) _malinfo [{iterp.c} 011

(SAMPLE] const {1/ churepores

13358 [coNTEXT]
o

< oy

AU 3ppiication = (SAMPLE] _read_nocarice [{iterp.c} (03]

.} 407

AU appiication = (SAMPLE] _open nocancel [{interp.c} (011
ool

10857 [CoNTEAT]

Tor 2+, bool

(SAMPLE]

MTEXT] TAU application -> (SAPLE]
AManager BasencallkinZons{double, do

(V1% bool. 500l {Yewmsa

103 011
ble, double, double CsloDatDescriptor canst stuec

Scott Snyder (BNL)

Performance monitors and profilers

Mar 21, 2019 9 /12

Others

@ gprof: Requires recompilation to add instrumentation. Generally gives
accurate information even for short runs, but doesn't work with
shared libraries.

LD_PROFILE: Dynamic loader can profile a single shared library.

oprofile: Low-overhead, system-wide profiler. Requires root.

gooda: Developed with HEP applications in mind, but seems to be
dead?

igprof: Was useful in the past, but didn't succeed in making it work
with Athena on the last attempt.

google-perftools: Includes statistical profiling. Was previously
integrated with Athena scripts. But doesn't seem to work correctly
with Athena recently (most call arcs are missing).

Other proprietary tools: Vampir, Apple, AMD, PGlI, nvidia, etc.

§ Scott Snyder (BNL) : Performance monitors and profilers Mar 21, 2019 10 / 12

Summary

@ Tools that | mostly use currently are valgrind and vtune.

@ TAU looks to have promise, but needs a bit of work before being
really useful.

» Something to convert TAU profiling data to kcachegrind format might
be a real help in getting people started!

e Other commercial tools may be useful on specific platforms (but |
don’t have personal experience with them).

§ Scott Snyder (BNL) : Performance monitors and profilers Mar 21, 2019 11 /12

TAU notes

Available from
https://www.cs.uoregon.edu/research/tau/home.php

Probably need to also download binutils, etc., as mentioned in the
build instructions.

Important to build TAU with the same compiler as used for the
application being profiled.
@ Can collect data using ‘tau_exec -ebs COMMAND'.

» —ebs means to do statistical sampling. If you leave it off, everything
will appear to work ok, but there will be no data in the resulting profile.

If fork() takes too long to execute, TAU can enter an infinite loop.
Need to disable/block SIGPROF around the fork().

§ Scott Snyder (BNL) : Performance monitors and profilers Mar 21, 2019 12 /12

