
Performance monitors and profilers

Scott Snyder

Brookhaven National Laboratory, Upton, NY, USA

Mar 21, 2019
HOW2019, JLab

Scott Snyder (BNL) Performance monitors and profilers Mar 21, 2019 1 / 12



Introduction

Questions like

How can I make my code run faster?

How can I reduce the amount of memory my code needs?

Is my code making good use of capabilities of the hardware?

are usually best addressed using tools that can measure the performance
of the code.

Measuring resources required by individual fragments of code is called
profiling.

Scott Snyder (BNL) Performance monitors and profilers Mar 21, 2019 2 / 12



Types of profiling

Statistical sampling

Interrupt program periodically with a timer. Record/histogram the
program counter at each interrupt.
[vtune, oprofile, etc.]

Performance counters

Modern CPUs maintain a variety of performance counters: instructions
executed, cache misses, etc. Can collect detailed information with low
overhead.
Often require root privileges to access.
[vtune, oprofile, etc.]

Simulation/emulation

Simulate program execution on a virtual machine, and collect performance
information from the model machine.
Slow. [valgrind (sort of. . .)]

Scott Snyder (BNL) Performance monitors and profilers Mar 21, 2019 3 / 12



Types of profiling

Manual instrumentation

Explicitly add calls to measure resources used by a particular piece of code.
Frameworks generally have support for, eg, measuring time and memory
used on a per-algorithm basis.

Automatic instrumentation

Code is transformed automatically to include performance analysis.
Can be done by the compiler, or by a separate tool.
Can also intercept and instrument library calls to monitor, eg, memory
usage.
[gprof, valgrind, etc.]

Event tracing

Allows program to log interesting events as a function of time for later
analysis. May also be useful for debugging.
[vtune, perf, tau]

Scott Snyder (BNL) Performance monitors and profilers Mar 21, 2019 4 / 12



Further considerations

Flat vs. call-stack profiling

Some profilers collect only the program counter. But if a program is
spending a lot of time in, say, memcpy, then you want to know which
functions are making most of the calls. Profilers that collect call stack
information can help with this.
Different tools may collect the stack to different depths, and may also
differ in handling cycles int the call graph.

Overhead

Collecting data will add to runtime and memory requirements. Can vary
from ∼ negligible to over an order of magnitude.

Bias

The act of collecting performance data can bias the performance results.
Some tools try to correct for this, more or less successfully. Somewhat
correlated with overhead.

Scott Snyder (BNL) Performance monitors and profilers Mar 21, 2019 5 / 12



Further considerations

Statistics

Tools relying on statistical sampling need the program to run for long
enough to accumulate sufficient statistics. Tools relying on
instrumentation may be fine with shorter runs.

Control

It is often useful to be able to restrict data collection to some phases of
the program — for example, collect data only for event processing but not
for initialization for finalization.
Can be either interactive or programmatic. No real standard on how to do
this.

User interface

What tools are available to inspect and analyze the results?
Can vary from a simple textual dump to an elaborate GUI.

Scott Snyder (BNL) Performance monitors and profilers Mar 21, 2019 6 / 12



Intel VTune

Comprehensive; low-overhead.

(Usually) works well for very large
applications.

Timeline analysis.

Support for finding issues due to
locking, etc.

Proprietary.

Need root access to go much
beyond basic statistical sampling.

Sometimes crashes for complicated
applications.

Scott Snyder (BNL) Performance monitors and profilers Mar 21, 2019 7 / 12



Valgrind

Open source; available in most
linux distributions.

Very robust.

No root privs needed.

Nice GUI for examining results
(kcachegrind).

Also a variety of runtime checking.

Dynamically transforms machine code to
add instrumentation.

Large overhead (10–50×).

Results sometimes significantly
biased.

Scott Snyder (BNL) Performance monitors and profilers Mar 21, 2019 8 / 12



TAU (Tuning and analysis utilities)

Very comprehensive: statistical
counters, performance counters,
optional instrumentation, GPUs,
MPI, etc. Muiltilanguage!

Open source.

No root privs needed.

Developers eager for collaboration.

Not so easy to figure out how to
use.

Some small (fixable) bugs on large
applications.

Analysis tools confusing. Some
parts, like call graph display, are
simply useless for large
applications.

See backup for further details.

Scott Snyder (BNL) Performance monitors and profilers Mar 21, 2019 9 / 12



Others

gprof: Requires recompilation to add instrumentation. Generally gives
accurate information even for short runs, but doesn’t work with
shared libraries.

LD_PROFILE: Dynamic loader can profile a single shared library.

oprofile: Low-overhead, system-wide profiler. Requires root.

gooda: Developed with HEP applications in mind, but seems to be
dead?

igprof: Was useful in the past, but didn’t succeed in making it work
with Athena on the last attempt.

google-perftools: Includes statistical profiling. Was previously
integrated with Athena scripts. But doesn’t seem to work correctly
with Athena recently (most call arcs are missing).

Other proprietary tools: Vampir, Apple, AMD, PGI, nvidia, etc.

Scott Snyder (BNL) Performance monitors and profilers Mar 21, 2019 10 / 12



Summary

Tools that I mostly use currently are valgrind and vtune.

TAU looks to have promise, but needs a bit of work before being
really useful.

▸ Something to convert TAU profiling data to kcachegrind format might
be a real help in getting people started!

Other commercial tools may be useful on specific platforms (but I
don’t have personal experience with them).

Scott Snyder (BNL) Performance monitors and profilers Mar 21, 2019 11 / 12



TAU notes

Available from
https://www.cs.uoregon.edu/research/tau/home.php

Probably need to also download binutils, etc., as mentioned in the
build instructions.

Important to build TAU with the same compiler as used for the
application being profiled.

Can collect data using ‘tau_exec -ebs COMMAND’.
▸ -ebs means to do statistical sampling. If you leave it off, everything

will appear to work ok, but there will be no data in the resulting profile.

If fork() takes too long to execute, TAU can enter an infinite loop.
Need to disable/block SIGPROF around the fork().

Scott Snyder (BNL) Performance monitors and profilers Mar 21, 2019 12 / 12


