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HEP Workloads:
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TABLEAU CRAPHIQUE dela températute en degrés du th étre de Réaumur au dessous de zéro.

production-like:
high throughput, ~stable software, schedulable. Experience on HPC.

analysis-like
low(er) throughput, volatile software, fast turnaround / interactive (?):

How can we bring analysis onto HPCs?




HPC Workloads

single-core, single-node

e.g. typical user
job

------------------------

multi-core, single-node

ﬁ e.g. simulation

multi-core, multi-node




Challenges / Notes:

 Many traditional HEP workloads, including analyses are
naturally embarassingly parallel.
* Not classic HPC (i.e. OpenMPI) jobs.

e Usage patterns to HPCs differ from rest of distributed
e user access:
* direct access often restricted
* requires integration into larger distributed compute infra
* network access:
e connectivity for software and data

e HPCs with hardware acceleration are coming online:
* need to formulate workloads can make use of GPUs




The Baseline: scheduling existing workloads into HPCs:

Harvester / Pilot2 provide the backbone for job submission to
heterogeneous resources

 Harvester: Interfaces ATLAS distributed analysis infrastructure
* Pilot2: payload execution on host.

Expected to work well in the mid-term
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Baseline - Analysis

Containerized Workloads:
» well-accepted now within HPC.
e singularity, shifter, sarus
e does not require network connectivity

* increasingly standards-compliant (OCI)
e singularity 3, sarus
* helps to transparently move workloads from
user/cloud to HPC
e containerized job definition integrated into Pilot

Solvable: Image distribution
e sync on HPC edge
e cvimfs
e crfs
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Baseline - Analysis

Dedicated user cli (pcontainer) and transform (runcontainer)

Prodsys task parameters

allowlnputLAN

architecture

cliParams pcontainer --loadJson=/tmp/tmpvLRInc --noBuild --containerlmage="'docker://alpine' --site='"ANALY_MWT2_SL7' --outDS="user.aforti.test.20190318204327" --exec="'echo 'Hello World""
cloud us
countryGroup uk

Kubernetes

HPC

D
GitLab

unit & integration
tests (Cl)
image building

user laptop registry

local dev Batch Systems




Baseline - Analysis with GPUs

also starting to integrate hardware accelerators

pcontainer --containerImage docker://... --architecture nvidia-gpu

Addressing paradox that hardware accelerators are both
plentiful (as a community) and scarce (as a user)

 making GPUs more widely accessible through standard HEP
interfaces (WMFS) essential for development and deployment
of hardware accelerated workloads

Working on porting / submitting Summit




Baseline - Analysis with GPUs
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Beyond the Baseline:
Distributed Training: the obvious candidate to check all boxes

Applies to range of architectures CPU, GPU,.. in future perhaps
emerging architectures (dataflow engines, spatial ..)

Various ML frameworks - some based on MPI
 Horovod (keras or torch)

e Distributed TF

* BigDL

 TF-Replicator

e PyTorch Distributed
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Example: Learning the Simulator

GANs: 3D convolutional GAN, Distributed training "
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https://indico.cern.ch/event/708041/contributions/3276256/attachments/1812352/2960472/GANsimulation_SofiaVallecorsa.pdf

Example: Probabilistic Programming - using the Simulator

* ML-"steered” simulator to sample
possible posterior interpretations —
of a given observation

e "universal inference"
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Inference Engine

Probabilistic
Programming

Execution Protocol " SHERPA (C++)

Both paradigms:

 massively distributed training
on HPCs (HSW @ Cori)

 embarassingly parallel inference |yference  vevctrueposterior 755 75T

to obtain posterior samples results with (7.7 singie ode
IC engine

Simulator
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https://indico.cern.ch/event/708041/contributions/3308721/attachments/1810112/2955782/baydin_acat_2019.pdf

Example: Active Learning

Active Learning is a good fit for parallelizable tasks and HPCs
e parallelization neutralizes sequential nature of active learning
e overall reduction of usedcycles

Example:
Optimizing BSM point generation

Animated ACAT Slides
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https://indico.cern.ch/event/708041/contributions/3308721/attachments/1810112/2955782/baydin_acat_2019.pdf
https://docs.google.com/presentation/d/1M_Moxnzajmod-39IDCsOQ4EPF9h0D1WayXuZ7R_vJmc/edit#slide=id.g52246c4d4c_0_1061

Example: Co-Processors

As ML applications become integrated into our main code-bases
(reco but also analysis). May (?) be useful to offload inference

to h/w-accelerated coprocessors.
*PU/FPGA/ASIC
>

RPC RPC RPC RPC
CPU

Similarly for Training, preprocess data on CPU, train on GPU.

Testing SONIC

Measure the performance of the SONIC package measuring the total

AC AT: I n fe re n ce o n F P G A S o n - p re m V s C I o u d endo-end latency of an inf:::ce reql::sf to Brainwave within CMSSW um

>

HPCs: possible advantage in fast links b/w MH i, PW
CPU and coprocessors R

— <fime> = 60 ms (~ 2ms on FPGA, rest is classifier and 1/0)

slides: J. Ngadiuba ACAT19
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https://indico.cern.ch/event/708041/contributions/3308721/attachments/1810112/2955782/baydin_acat_2019.pdf
https://indico.cern.ch/event/708041/contributions/3276153/attachments/1810701/2957078/Sonic_ACAT2019_Ngadiuba.pdf

Beyond MPI and ML.:

Most workloads in HEP will not be MPI, but there are other
distributed paradigms that might fit better.

=% wn

Generically, systems that gang-scheduled and communicate with
each other




Out-of-Core Dataframes and Arrays:

Dataframe concept popular DS/DL, making its way into HEP.
Probably distributed analysis paragdim most aligned w/ analysis

Multiple systems to handle TB-scale data-frames
* Dask |

e Vaex é -
 Ray / Modin [ |
 RDataFrame DASK

High Performance Computers

Some use MPI as a o
backend, but not the e
APl exposed to users >Amy
good) e M g
=0 )
distributed ||
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Example: Distributed Statistical Analysis using

17 Dask Progress X

Progress -- total: 1415, in-memory: 100, processing: 0, erred: 0
getitem 300/300 ones 2/2

uuuuu m 200 /200 zeros 1/1
uniform 1017101/
here 101/101

‘ 17 Dask Task Stream X
[E——

Task Stream - 0P o e 3

explode computational Hﬁ]ﬂﬂﬂﬁﬂﬂﬁﬁ ==|=N|==.-!;IIII-_I[.I=’|
graph to multiple N DTN T i

workers

@' )




Example: Statistical Analysis on Hardware Accelerators

Standard HEP Fits (HistFactory)

Scaling of Interpolation Code 0 Scaling of Interpolation Code 0

Possible that once a computation

is expressed within DL-type s [ =
computational graphs, porting =GP 57

to new architectures not too
hard.
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Best of both worlds: Dask + GPUs

README.md

Dask GPU Dataframes

A partitioned gpu-backed dataframe, using Dask.

Setup from source

Setup from source repo:

1. Install dependencies into a new conda environment

conda create -n dask-cudf \
—c rapidsai -c numba -c conda-forge -c defaults \
cudf dask cudatoolkit

good target for analysis
on GPU-heavy HPCs?
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Generic distributed system: Kubernetes

il O

e accelerator-aware workloads

e containers

 distributed processing beyond MPI

e UX parity to clouds: helps move workloads into HPC

Brings thee things together
we want on an HPC

use-cases: automated analysis pipelines (REANA, Parsl, yadage,
luigi, snakemake, nextflow, etc...) on HPC




Example: Reinterpretations

conceivable to run full reinterpretation campaign tightly packed
within HPC. E.g. (O(100M-1B) events)

Related to "analysis train" idea.

e capture analysis as containerized computational graph

e events simulation / fast chain - go through standard HPC hooks

e analysis re-execution through containerized workflows on e.g.
Kubernetes deployed on HPC
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Question: How to deploy distributed workloads through WMFS

e force MPI
e not a natural API for analysis
* bespoke solutions per workload type
e standard MPI Jobs
 Dask, Ray, Vaex, Spark, etc..
* Distributed Learning
 how to we describe distributed applications?

Perhaps optimal for some cases, but hard to scale to new
analysis systems

Revisit how we solved it in non-distributed setup
* Pilot: capture resources from "provider" generically, defines
"blank slate” on which we can build/deploy our workload

cﬁw
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What's the pilot in the distributed case

... perhaps it's Kubernetes.

e captures generic multi-node resources
* blank canvas on which a wide range of distributed workloads
can be deployed
e community is developing standards how to describe
distributed workloads
* k8s popular target for data anlysis platforms anyways
e scales to 10-100k cores, handles custom hardware
* increasing attention from HPC community (singularity CRI)
e good for heterogenous environment
can move from HPC to Cloud and back 3s->'essthankss
 testable by users outside of HPC

Great for

e can be lightweiaht (k3s: 40MB) : Soe
] sylabs / singularity-cri .o
. - < ARM '
<> Code Issues 22 Pull requests 0 Projects 0 Wiki . . 2 PhD in kBs ¢ Q

The Singularity implementation of the Kubernetes Container Runtime Interface
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[ pdistributed --app dask/dask:1.0.0 ... ?
Harvester ?]

HPC/Cloud

e grab resource via k8s
* deploy workload to k8s
e run to completion

* evict HPC/Cloud




Interactive Workloads
 demand for interactive analysis, backed by large scale compute
e direct ssh access to HPCs not feasible for full VO

Pangeo: An Open Source Big Data Climate
Example: pangeo.io Science Platform

HPC / Cloud Compute

kubernetes + dask + xarray + jupyte .

N[N S,
Can we brlng this to HEP? ‘%{{8«» dask v;eb.browser E
Move from shell to APIl-based 5«(( L Xa"aYJ

access to distributed compute +
advanced Uls

e e.g. JupyterHub at BNL

e atlas-ml.orq via SLATE

« SWAN @ CERN

compute nodes

Co-locate with HPC, integrate with



http://pangeo.io
http://atlas-ml.org

Large number of cycles will be provided by HPC (esp US)

* hardware accelerators (GPU, CSA, ...) following general trend
(TPU)
* need to figure out how to use them and integrate them into our
existing workload management
 Machine Learning Applications are a natural fit
ML development / training
* end-to-end ML analysis
e co-processor inference

* For Analysis, forcing users into OpenMPI (as main API)
probably too limiting
* but many opportunities for higher level interfaces (e.g. data-
frames, computational graphs) that internally adapt to h/w,
distirbuted scenarios
 Kubernetes as Pilot?
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