QoS Session WLCG Workshop

Data Management for extreme scale computing

Oliver Keeble on behalf of the working group

WLCG Workshop: QoS Session

- X Brief Intro
- X QoS WG activities
 - Survey
 - White Paper
- X Experiment input
- X Storage providers
- **X** Discussion

- "Quality of Service"
 - A quantitative measure of service performance characteristics
 - Intended to be associated with a cost and a workflow
 - "Unreliable and cheap", "Fast and expensive"
- QoS is asking questions such as:
 - Are there places in experiment work-flows where it makes sense to trade performance/reliability for increased storage capacity?
 - Are there places in experiment work-flows where a small amount of higher performance storage would yield significant benefits?
- QoS our umbrella term for finding the cheapest possible solution to a given problem (workflow)
 - Concentrating on storage

- Is this new?
 - Have you always tried to meet your pledge at the lowest possible cost?
 - Do you wonder how you could deliver your services more cheaply? Or if your users could manage with something different?
 - Do you think this is going to get any easier?

QoS

- Is not new
- Is a new label to group existing efforts
- Now is the time to
 - Give it some more emphasis
 - Coordinate efforts

- Is this new?
 - Have you always tried to meet your pledge at the lowest possible cost?
 - You have always cared about QoS
 - Do you wonder how you could deliver your services more cheaply? Or if your users could manage with something different?
 - Do you think this is going to get any easier?
- QoS
 - Is not new
 - Is a new label to group existing efforts
- Now is the time to
 - Give it some more emphasis
 - Coordinate efforts

- Is this new?
 - Have you always tried to meet your pledge at the lowest possible cost?
 - You have always cared about QoS
 - Do you wonder how you could deliver your services more cheaply? Or if your users could manage with something different?
 - You care about QoS
 - Do you think this is going to get any easier?

QoS

- Is not new
- Is a new label to group existing efforts
- Now is the time to
 - Give it some more emphasis
 - Coordinate efforts

• Is this new?

- Have you always tried to meet your pledge at the lowest possible cost?
 - You have always cared about QoS
- Do you wonder how you could deliver your services more cheaply? Or if your users could manage with something different?
 - You care about QoS
- Do you think this is going to get any easier?
 - You will only care more about QoS

QoS

- Is not new
- Is a new label to group existing efforts

Now is the time to

- Give it some more emphasis
- Coordinate efforts

Introduction – an analogy

Familiar QoS concepts

Disk

- Huge QoS variations possible under this category
- All relevant workflows mapped onto this
 - For a particular workflow, can be overspecified in some ways (e.g. reliability) and underspecified in others (e.g. concurrent clients)

Tape

- Covers both durability and lowcost
- → "Disk", "Tape"

- Example additional storage QoS possibilities:
 - Enterprise HDD as RAID: OUTPUT, REPLICA, COLD
 - Consumer HDD as JBOD: REPLICA
 - (public) cloud storage: COLD
 - SSD as JBOD: FAST
 - Internal replicas existing on multiple server nodes:
 FAST

The DOMA Working Group

WG Activities

- Site Survey
 - Understand the current and potential QoS landscape
- Experiment Contact
 - Map workflows onto QoS (i.e. onto different systems, reconfigured systems...)
- White Paper
 - A short reference on status and opportunities for cost savings through QoS in WLCG
- Gathering storage provider input
- Contact with other activities: Access WG, Storage Resource Reporting, Cost Modelling...
- Get involved: sites, experiments and storage providers are very welcome!
 - https://twiki.cern.ch/twiki/bin/view/LCG/QoS
- Egroup: WLCG-DOMA-QoS
 - https://e-groups.cern.ch/e-groups/EgroupsSubscription.do?egroupName=wlcg-doma-qos

Site Survey

- Describe your current system
- Describe your users and use cases
- R&D involvement, future directions
- Will be sent out with example responses filled in by CERN and DESY
- CERN
 - EOS erasure encoding, Server hardware configuration, Tactical deployment of SSDs, Tape backends ...
- DESY

- ...

Experiment Input

ALICE - two QoS types in the future (same as today)

- **Disk** primary holder of analysis objects
 - No use case for complicated disk structures
 - Current implementation is OK the size of the site (CPU) and nearby SE I/O performance are usually matching well
 - o In very special cases (Analysis Facility) direct negotiation with the site providing the AF
- Custodial (@present=Tape)
 - Single instance of RAW data and replica of the reco/MC output
 - Strictly controlled recall/access
 - SSD caches as tape buffer are very interesting concept
- **The trend** software configurable storage, inexpensive hardware (JBODs, no hardware RAID, no special FS)
 - ALICE is fully on board with this
 - Sites manage the infrastructure, combined storage (aka 'data lakes') for close and well connected sites is working and we support it through the ALICE
 DM system

Rucio & QoS Short Summary

What is important for us?

- Common language for the definition of QoS classes and QoS properties
- Common API + data structure to ask for for QoS transition
- QoS capabilities and zones from each storage need to be published and kept up to date
 - Rucio needs to know in which QoS zone the data is for internal scheduling
- Storage can automatically transition between "lower" QoS properties, but must never exceed constraint
 - o e.g., move between cheaper zones without affecting combined cost and latency constraint
 - Must notify Rucio when such a transition happens
- Rucio would continuously check all QoS constraints at the rule level
 - Request transitions as necessary to keep rules satisfied

Some (very initial) Thoughts on QoS

CMS (from DOMA general meeting)

We understand QoS as an intend by sites

Are there plans to monitor and verify the promised QoS? Who?

Some possible QoS classes:

Archival	High I/O Disk	Resilient Disk	Non-redundant Disk
Long term archivingMinimal data lossesUnderstood recall rates	 Fast spinning disk SSD Capability to serve most demanding Workflows Pileup Mixing 	 Medium I/O RAID or duplication against disk failures Site attempts recovery of files 	 Medium I/O Maximum capacity per cost Experiment recovers (expected) file losses

Presently Tape

Presently Disk (not distinguishing any QoS)

Other relevant QoS metrics

- WAN connectivity: at least coarse classification (1Gb/s, 10Gb/s, 100Gb/s)
- Minimum effective read size
 - CMS application sends vectors of many smallish read requests
 - Too large minimum read sizes lead to good throughput, but still inefficient applications

Experiment input: LHCb

- QoS appears through the "Service class".
 - In LHCbDirac: configuration linked with operational requests. No software definition
- T1D0: used for archive, this very precious data.
 - Operationally 2 replicas for RAW data but only 1 for other (derived) datasets
 - Heavy task to reproduce derived dataset in case of loss => high reliability required
- T0D1: used for 3 purposes
 - Datasets for physics: usually >1 disk replica + 1 archive => loss is not a disaster, can be recovered
 - Temporary datasets (before further processing/merging): a single replica with life time of a few days => loss created operational complications, although re-creation is possible but painful
 - User private data)e.g. nTuples): usually 1 disk replica, can be re-created with operational complications (users are less experienced). Also used for input sandboxes, this availability is usually a problem (jobs cannot run if SB is unavailable)
- T0D2: EOS @ T0
- Possible improvements
 - New class with very high QoS for temporary data (also for user data?)
 - Important: New classes should be available through separate endpoints or explicit prefixes

Storage Systems

Storage Systems

- Storage Systems' QoS support generally already exceeds what we currently use in WLCG
 - All support pools with different media types
 - Most distinguishable by prefix
 - All support multi replica either natively or through the backend system
 - Almost all support multi-site operation
 - Most have hierarchical support with potentially automated QoS transitions
 - Including tape backends
 - Some have volatile or caching modes of operation
 - Some support CDMI, an interface extendable with support for QoS operations
- What's missing?
 - Production-grade QoS Management interface (but do we need it?)

Discussion

Discussion points

- Is a new "contract" desirable/possible between sites and experiments?
 - What characteristics do we care about? (i/o, durability, ...)
 - Does the pledge system need a review?
 - How would new QoS classes be validated?
- What are sites interested in trying?
- What technology should we be reviewing?
- How can the experiments adapt their workflows to exploit QoS savings?
- What QoS transitions on a single system are desirable?
 - Is a community discussion required for a post-SRM tape interface?
- What other QoS initiatives are there (Escape)?
- What should the WG be concentrating on?