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DDM Ops?

e Primary task is to keep our data under control

® 80% of DDM ops is automated — the rest requires manual effort
o lifetime model updates, exceptions, secondarisation, dark data verification & cleanup
o rebalancing between sites, comparison of pledged vs available, etc...

® Lost files — automation very tricky J—
e Transfers not progressing e
® Reports for diverse mgmt groups R
® Technology evaluations S
o Network tests, Tape tests, ... O
Helping users with their data tasks - T PETRTH ||| ! I |||_"__
Heroic efforts by Cedric, Dimitrios & Tomas 2015 2016 2017 2018
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Why is it so difficult?

Decision making by DDM Ops people is based on two decades of experience

O  Therecipes are in Wikis and Docs, ...
O ... butwhen you need to touch 10 Petabytes of data you want to be really sure what you're doing
o  Simple changes can have large effects on other parts of the distributed computing environment

We have tried in the past to "encode" this experience

o  Fashionable again due to fancy new technologies

The expectation is that the more you know about the steady-state of the system
the better you can react to problems, or anticipate potential improvements

This is an inventory of things that we tried to ease our operational challenges
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Anomaly detection in multi-dimensional time series

e '"Can we predict transfer problems from our instrumentation data?"

o Ship data somewhere else, find different routes, delay, throttle, etc...

® Presumption that a potential steady-state exists
e No discernible difference between NNs and F/SARIMA models

® Approach using wavelets was more promising
o  Find the spatio-temporal dependencies of the signal

e All models beaten by short history approaches

O Last-n values always a better predictor

e Eventual conclusion
—> reactive better than predictive
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Hybrid simulation

e '"Can we evaluate different dataflow models?" ZD |

e Flow-based discrete events based on SimGrid Q |
e Analysis of the full 2015 dataflow — 5:,.:::% 1) ﬂ
e Every component modelled with a technique = | '

that was best suited on the available data

2.0

o  CART, SVMs, ffNN, ...

e Median relative error of full sim at 33%
o State of the art (GloBeM) before was 73% error!
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e Still way too far from anything remotely close g e Sy SR e

|
|
|

to what we were aiming for ‘ ] I . .
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https://simgrid.org/

Anomaly detection revisited — Deep NN

Histogram: Errors

e \Vlyom Sharma, GSoC'17 °
® Deep learn steady-state with LSTM
® Be able to trigger on steady-state
violation for alerting
o Training time 30min on 1mon history o :
e Good hitrates, but N ]
e On our scale still thousands of . hoso w0 10 20 40 20 16 00 o0 o0 1o

0 50 100 150 200

wrong anomalies every day
® Can be solved through proper labelling of anomalies

o But who will manually label thousands of anomalies every day?

e https://github.com/vyomshm/DeepAnomaly
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https://github.com/vyomshm/DeepAnomaly
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e FEvaluation of classifiers for problematic transfers based on events
® Looked very promising, but no follow-up due to lack of persons

Estimated variable importance using outputs (BDT) Classifier Score vs throughput (Testing Sample)
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https://github.com/SimenHellesund/playground/blob/master/simen/outputBDT.pdf

Data popularity

® Thomas Beermann, Thomas Maier
® Predict data popularity using NNs and use this to improve job throughput
® Built new Rucio component

TTC = X hours | Tasks with dataset as input after C3PO decision was made |
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https://cds.cern.ch/record/2625220/files/ATL-SOFT-SLIDE-2018-393.pdf

Transfer time estimation — the early days

e Wesley Toler, Summie
e Came from a particular use-case "where should we place Heavy lon data?"

o  Estimate distance in terms of throughput instead of longitude/latitude
o  Place or rebalance data close in distance to the few HIMEM queues

® Beginning of the "transfer duration estimation" efforts (TTC)

e Used decision trees

o Good in some cases

o Badin others

® Decided we need a more
dedicated effort
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Transfer time estimation — Next Generation

Number of Transfers Queued

® Joaquin Bogado

e Client-focused approach

O

rule to finish?"

e User /WFMS can react accordingly

Rucio and FTS queues for CERN --> BNL

"How long will it take to for my

e Rucio is holding some transfers
10000 back to avoid FTS queues to be
overfeed.
e Not clear yet why this overfeed
foee oceurs.
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—— Queued at TS (Production_Input)
—— Queued at FTS (Data_Consolidation)
—— Queued at FTS (TO_Export)

—— Queued at FTS (Functional_Test)
— Queued at Rucio
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https://docs.google.com/presentation/d/1fdAorPYBsC74QB4QaU8YZ7ShrsmhcN7Nb6RTHlE7gz4/edit?usp=sharing

Where to go from here?

e Lots of varied activities, very dispersed focus, but promising intermediary results!

o  We have suffered always from time-constraints of people (10% here, 20% there, ...)

e Very difficult to bring analytics results back into operations
o We understand a lot of our infrastructure and dataflows much better now
o  But it still doesn't take the load off our operations people!
® Cross-experiment operational effort needs to go beyond analytics
o Needs to be well-communicated, automated and verifiable
o  Share the recipes and home-made scripts that already exist
o Start small and identify the boundaries of a problem to solve (e.g., "which data to rebalance")
o Build trust in the tools and verify them with real workloads

e Can we envision a cross-experiment operational team?
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