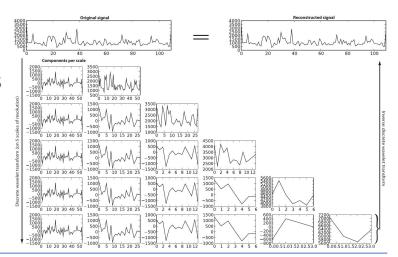


Mario.Lassnig@cern.ch

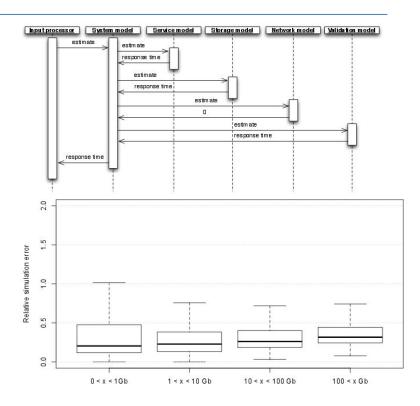
DDM Ops?

- Primary task is to keep our data under control
- 80% of DDM ops is automated the rest requires manual effort
 - o lifetime model updates, exceptions, secondarisation, dark data verification & cleanup
 - o rebalancing between sites, comparison of pledged vs available, etc...
- Lost files automation very tricky
- Transfers not progressing
- Reports for diverse mgmt groups
- Technology evaluations
 - Network tests, Tape tests, ...
- Helping users with their data tasks
- Heroic efforts by Cedric, Dimitrios & Tomas

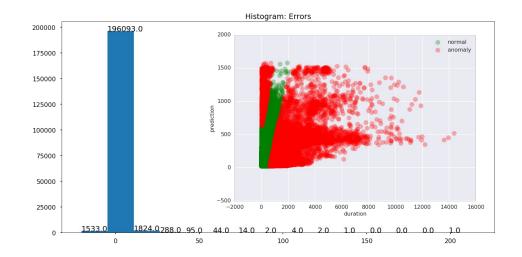


Why is it so difficult?

- Decision making by DDM Ops people is based on two decades of experience
 - The recipes are in Wikis and Docs, ...
 - o ... but when you need to touch 10 Petabytes of data you want to be really sure what you're doing
 - Simple changes can have large effects on other parts of the distributed computing environment
- We have tried in the past to "encode" this experience
 - Fashionable again due to fancy new technologies
- The expectation is that the more you know about the steady-state of the system the better you can react to problems, or anticipate potential improvements
- This is an inventory of things that we tried to ease our operational challenges

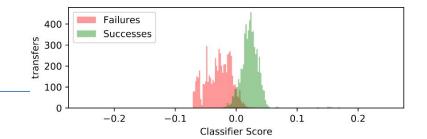

Anomaly detection in multi-dimensional time series

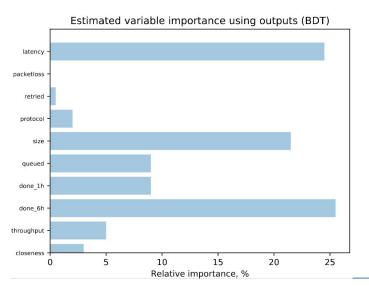
- "Can we predict transfer problems from our instrumentation data?"
 - Ship data somewhere else, find different routes, delay, throttle, etc...
- Presumption that a potential steady-state exists
- No discernible difference between NNs and F/SARIMA models
- Approach using wavelets was more promising
 - Find the spatio-temporal dependencies of the signal
- All models beaten by short history approaches
 - Last-n values always a better predictor
- Eventual conclusion
 - —> reactive better than predictive

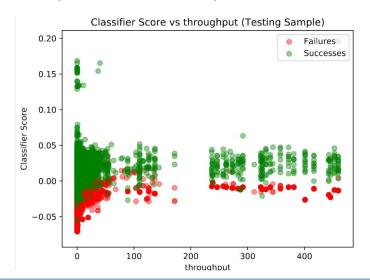

Hybrid simulation

- "Can we evaluate different dataflow models?"
- Flow-based discrete events based on <u>SimGrid</u>
- Analysis of the full 2015 dataflow
- Every component modelled with a technique that was best suited on the available data
 - o CART, SVMs, ffNN, ...
- Median relative error of full sim at 33%
 - State of the art (GloBeM) before was 73% error!
- Still way too far from anything remotely close to what we were aiming for

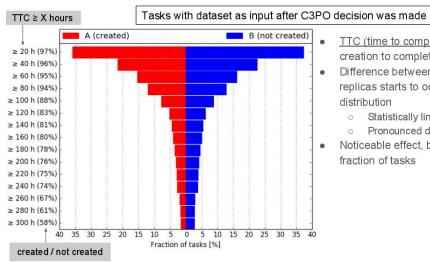
Anomaly detection revisited — Deep NN


- Vyom Sharma, GSoC'17
- Deep learn steady-state with LSTM
- Be able to trigger on steady-state violation for alerting
 - Training time 30min on 1mon history
- Good hitrates, but
- On our scale still thousands of wrong anomalies every day

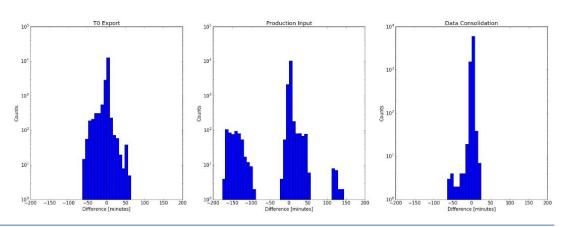

- Can be solved through proper labelling of anomalies
 - But who will manually label thousands of anomalies every day?


https://github.com/vyomshm/DeepAnomaly

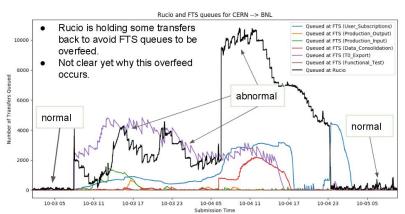
Automating labelling?

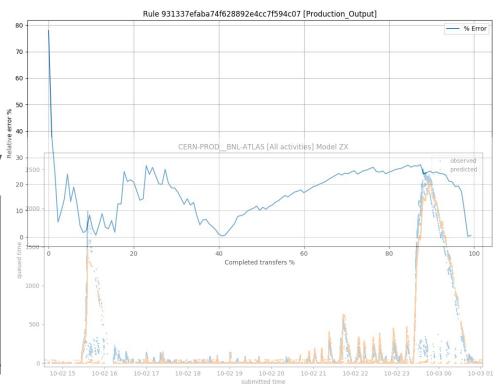

- Simen Hellesund, QT
- <u>Evaluation</u> of classifiers for problematic transfers based on events
- Looked very promising, but no follow-up due to lack of persons

Data popularity


- Thomas Beermann, Thomas Maier
- Predict data <u>popularity</u> using NNs and use this to improve job throughput
- Built new Rucio component (C3PO) to exploit this popularity prediction
- Slight but noticeable effect especially on the long tail confirmed via A/B testing

- TTC (time to completion): time from point of creation to completion of the task
- Difference between created and not created replicas starts to occur in the tails of the TTC distribution
 - Statistically limited
 - Pronounced difference only in long tails
 - Noticeable effect, but concerns only a small fraction of tasks


Transfer time estimation — the early days


- Wesley Toler, Summie
- Came from a particular use-case "where should we place Heavy Ion data?"
 - Estimate distance in terms of throughput instead of longitude/latitude
 - Place or rebalance data close in distance to the few HIMEM queues
- Beginning of the "transfer duration estimation" efforts (TTC)
- Used decision trees
 - Good in some cases
 - Bad in others
- Decided we need a more dedicated effort

Transfer time estimation — Next Generation

- Joaquin Bogado
- Client-focused approach
 - "How long will it take to for my rule to finish?"
- User / WFMS can react accordingly ^{2/3}

Where to go from here?

- Lots of varied activities, very dispersed focus, but promising intermediary results!
 - We have suffered always from time-constraints of people (10% here, 20% there, ...)
- Very difficult to bring analytics results back into operations
 - We understand a lot of our infrastructure and dataflows much better now
 - But it still doesn't take the load off our operations people!
- Cross-experiment operational effort needs to go beyond analytics
 - Needs to be well-communicated, automated and verifiable
 - Share the recipes and home-made scripts that already exist
 - Start small and identify the boundaries of a problem to solve (e.g., "which data to rebalance")
 - Build trust in the tools and verify them with real workloads
- Can we envision a cross-experiment operational team?