



# CPUs, GPUs, accelerators and memory

Andrea Sciabà

On behalf of the Technology Watch WG

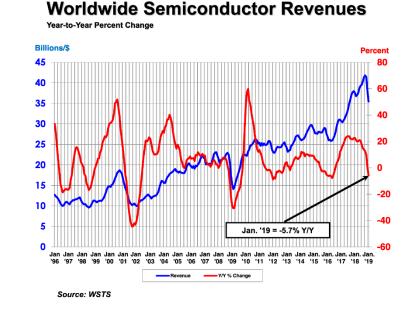
HOW Workshop 18-22 March 2019 Jefferson Lab, Newport News



## Introduction

- The goal of the presentation is to give a broad overview of the status and prospects of compute technologies
  - Intentionally, with a HEP computing bias
- Focus on processors and accelerators and volatile memory
- The wider purpose of the working group is to provide information that can be used to optimize investments
  - Market trends, price evolution
- More detailed information is already available in a document
  - Soon to be added to the WG website

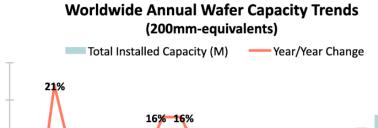


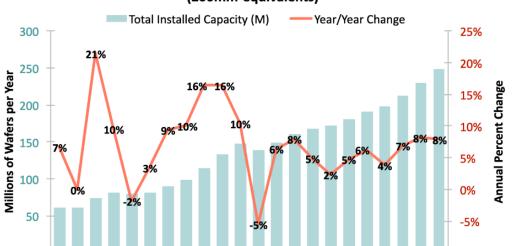

## Outline

- General market trends
- CPUs
  - Intel, AMD
  - ARM
  - Other architectures
- GPUs
- FPGAs
- Supporting technologies
- Memory technologies



#### Semiconductor device market and trends


- Global demand for semiconductors topped 1 trillion units shipped for the first time
- Global semiconductor sales got off to a slow start in 2019, as year-to-year sales decreased
- Long-term outlook remains promising, due to the ever-increasing semiconductor content in a range of consumer products
- Strongest unit growth rates foreseen for components of
  - smartphones
  - automotive electronics systems
  - devices for deep learning applications

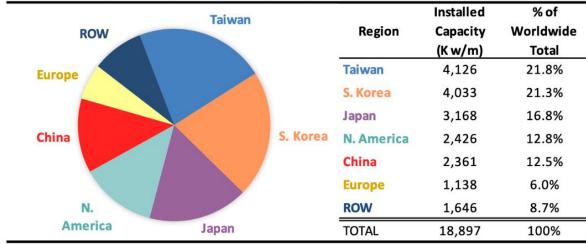







## Semiconductor fabrication

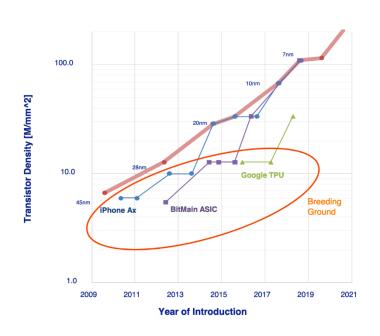




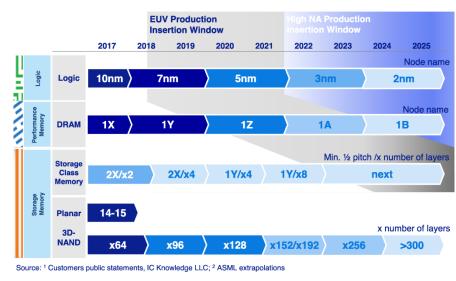

98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18F19F

Source: IC Insights

- Taiwan leading all regions/countries in wafer capacity
- TSMC held 67% of Taiwan's capacity and is leading
- Samsung and SK Hynix represent 94% of the installed IC wafer capacity in South Korea
  - They are likely to influence memory prices (which are now very high)
- New manufacturing lines are expected to boost industry capacity by 8% in both 2018 and 2019


#### Wafer Capacity at Dec-2018 – by Geographic Region (Monthly Installed Capacity in 200mm-equivalents)





Source: ICInsights

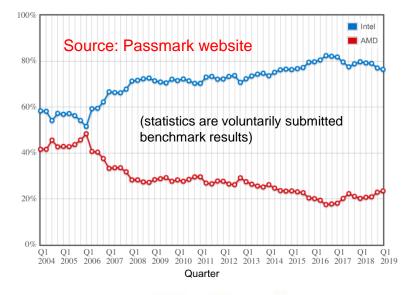


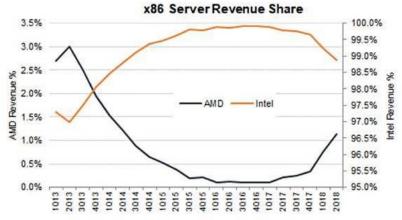
# Process technology





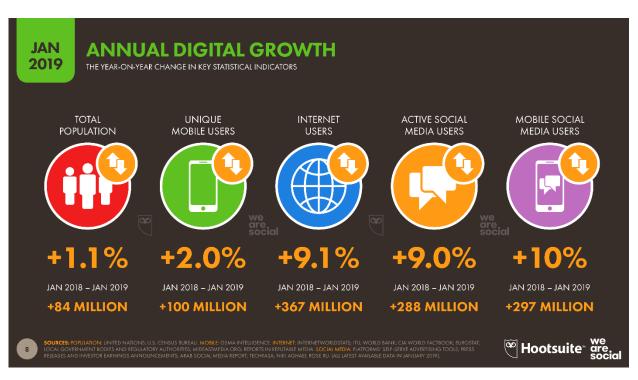


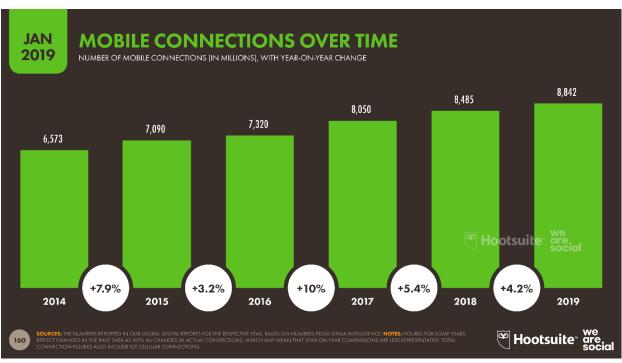

- Performance scaling in process technology continues to grow Moore's law prediction
- Embedded processors benefit the most from process manufacturing improvements
- EUV is forecast to be the dominant lithography technology in the coming years
  - Already used for 7nm by TSMC for AMD, Apple, Nvidia and Qualcomm




## Intel and AMD market share

- AMD server market share is rapidly increasing since 2017, but from almost nothing
  - Zen architecture released in 2017
  - Achieved 5% of server shipment market share on Q4 2018, projected to 10% in one year
- AMD always had a reasonable (20-30%) share overall
- EPYC revenue was \$58m in the second 2018 quarter vs \$36m in the prior quarter








# Internet and smart population growth and effects





- Small changes in smart population trend from 2018
- Significant increase in mobile social media usage over the past year

## **CPUS AND ACCELERATORS**



# Intel server CPU line-up

- Intel Xeon Scalable Processors
  - Currently based on Skylake-SP and coming in four flavours, up to 28 cores
- Only minor improvements foreseen for 2019
  - Adding support for Optane DC Persistent
     Memory and hardware security patches
- New microarchitecture (Sunny Cove) to become available late 2019
  - Several improvements benefiting both generic and specialised applications

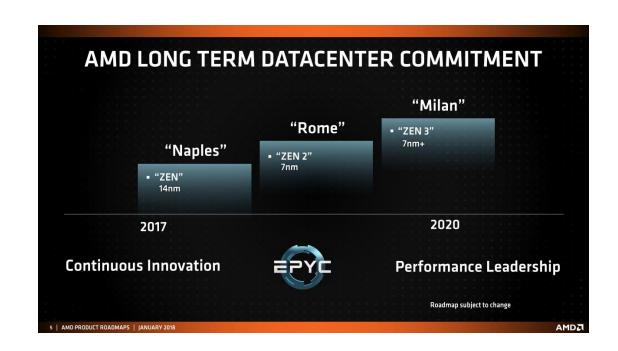




# Current and future Intel server architectures

| Microarchitecture            | Technology | Launch year | Highlights                                                                                                                                           |
|------------------------------|------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skylake-SP                   | 14nm       | 2017        | Improved frontend and execution units  More load/store bandwidth Improved hyperthreading  AVX-512                                                    |
| Cascade Lake                 | 14nm++     | 2019        | Vector Neural Network Instructions (VNNI) to improve inference performance Support 3D XPoint-based memory modules and Optane DC Security mitigations |
| Cooper Lake                  | 14nm++     | 2020        | bfloat16 (brain floating point format)                                                                                                               |
| Sunny Cove<br>(aka Ice Lake) | 10nm+      | 2019        | Single threaded performance New instructions Improved scalability Larger L1, L2, μop caches and 2nd level TLB More execution ports                   |
| Willow Cove                  | 10nm       | 2020?       | Cache redesign New transistor optimization Security Features                                                                                         |
| Golden Cove                  | 7/10nm?    | 2021?       | Single threaded performance Al Performance Networking/5G Performance Security Features                                                               |

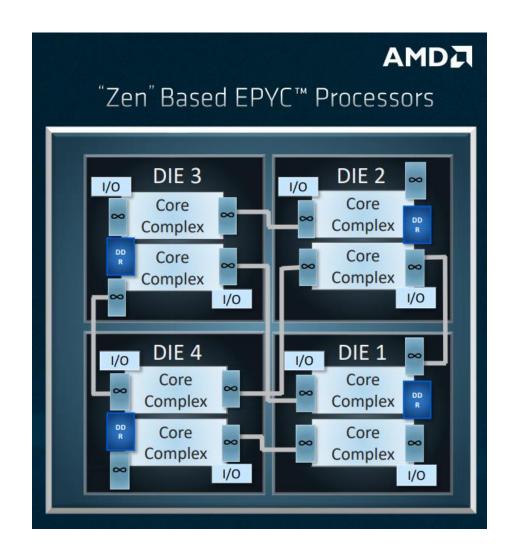



## Other Intel x86 architectures

- Xeon Phi
  - Features 4-way hyperthreading and AVX-512 support
  - Elicited a lot of interest in the HEP community and for deep learning applications
  - Announced to be discontinued in summer 2018
- Networking processors (Xeon D)
  - SoC design
  - Used to accelerate networking functionality or to process encrypted data streams
  - Two families, D-500 for networking and D-100 for higher performance, based on Skylake-SP with on-package chipset
  - Hewitt Lake just announced, probably based on Cascade Lake
- Hybrid CPUs
  - Will be enabled by Foveros, the 3D chip stacking technology recently demonstrated



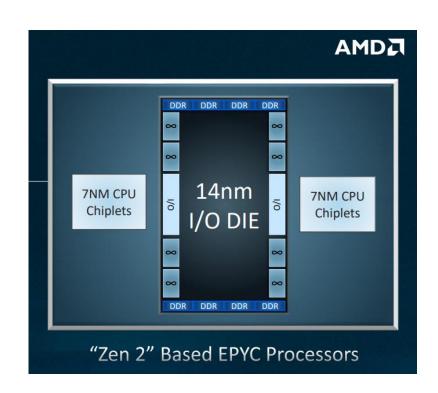
# AMD server CPU line-up


- EPYC 7000 line-up from 2017
  - Resurgence after many years of Bulldozer CPUs thanks to the Zen microarchitecture
    - +40% in IPC, almost on par with Intel
    - 2x power efficiency vs Piledriver
  - Up to 32 cores
- Already being tested and used at some WLCG sites





# **EPYC Naples**


- EPYC Naples (Zen) consists of up to 4 separate dies, interconnected via Infinity Fabric
  - Chiplets allow a significant reduction in cost and higher yield
- Main specifications
  - up to 32 cores
  - 4 dies per chip (14nm), each die embedding IO and memory controllers
  - 2.0-3.1 GHz of base frequency
  - 8 DDR4 memory channels with hardware encryption
  - up to 128 PCI gen3 lanes per processor (64 in dual )
  - TDP range: 120W-200W
- Similar per-core and per-GHz HS06 performance to Xeon





#### **EPYC** Rome

- Next AMD EPYC generation (Zen 2), embeds 9 dies, including one for I/O and memory access
  - Should compete with Ice Lake
- Main specs:
  - 9 dies per chip : a 14nm single IO/memory die and 8 CPU 7nm chiplets
    - +300-400 MHz for low core count CPUs
  - 8 DDR4 memory channels, up to 3200 MHz
  - up to 64 cores
  - up to 128 PCI Gen3/4 lanes per processor
  - TDP range: 120W-225W (max 190W for SP3 compatibility)
  - Claimed +20% performance per-core over Zen, +75% through the whole chip with similar TDP over Naples
  - To be released during 2019





# Recent experiences in WLCG

#### 1. LHCb

- Using some nodes with EPYC 7301 CPUs (16 cores)
- Performance of LHCb trigger application almost equal to Xeon Silver 4114 (10 cores)
- Need to populate all 8 DIMM slots for maximum performance
- Testing it as potential hypervisor platform
- Will competitively tender with Intel next year

#### 2. NIKHEF

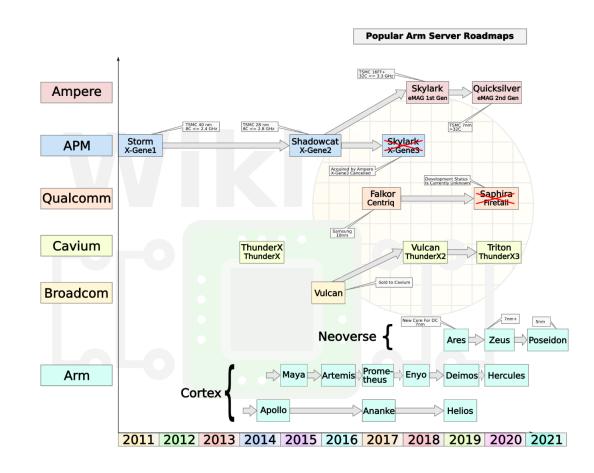
- Have 93 single-socket 32 core EPYC 7551P nodes in production
- A single EPYC 7371 node (single socket, 16 cores), available for tests

#### 3. INFN

- All WLCG sites have installed in 2018 a number of systems (40 in total) with EPYC 7351 (16 cores) in Twin Square configuration
- Experience very positive

#### 4. BNL

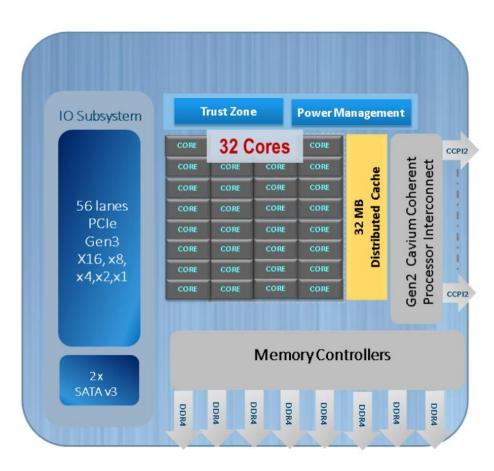
- Extensive tests with several EPYC CPUs <u>presented</u> at HEPiX Fall 2018
- Measured performance from mid/upper range EPYC similar to mid/upper range Xeon Gold


#### Caltech

Two servers with EPYC 7551P (32 cores), soon available for benchmarking



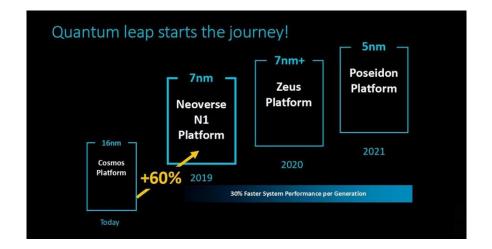
## ARM in the data center

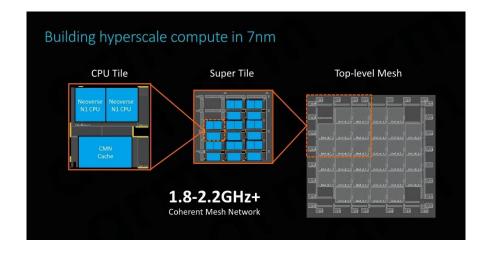

- ARM is ubiquitous in the mobile and embedded CPU word
- Data center implementations have been relatively unsuccessful so far
  - Performance/power and performance/\$ not competitive with Intel and AMD
- LHC experiments are capable of using ARM CPUs if needed
  - Some do nightly builds on ARM since years
- Only a few implementations (potentially) relevant to the data center
  - Cavium ThunderX2
  - Fujitsu A64FX
  - ARM Neoverse
  - Ampere eMAG, Graviton





# Marvell ThunderX2 and Fujitsu A64FX


- ThunderX2 for mainstream cloud and HPC data centers, from 2018
  - Enjoys the greatest market visibility and reasonable performance/\$
    - Used e.g. at CRAY XC-50 at Los Alamos and HPE Apollo 70 based Astra HPC system at Sandia National Laboratory
  - ARM V8.1 architecture
    - Up to 32 cores, 4-way SMT
    - Up to 8 DDR4 memory channels
    - Up to 56 PCle Gen3 lanes
- Fujitsu A64FX to be used in supercomputer at RIKEN center
  - Based on the V8.2-A ISA architecture
    - First to deliver scalable vector extensions (SVE)
    - 48 cores
    - 32 GB of HBM2 high bandwidth memory
    - 7nm FinFET process
  - Interesting to see what performance will achieve as it may lead to a more competitive product






#### **ARM Neoverse**

- Two platforms for the data center
  - N1 for cloud, E1 for throughput
- Based on the Neoverse N1 CPU
  - Very similar architecture to Cortex A76 but optimized for high clock speeds (up to 3.1 GHz)
  - Two N1 cores each with L1 and L2 caches
  - To be combined by licensees with memory controller, interconnect and I/O IP
- Demonstrated the N1 Hyperscale Reference Design
  - 64-128 N1 CPUs each with 1 MB of private L2
  - 8x8 mesh interconnect with 64-128 MB of shared cache
  - 128x PCIe/CCIX lanes
  - 8x DDR4 memory channels
- Intended to strengthen ARM's server market share
  - Not expected to be available for another 1-1.5 years

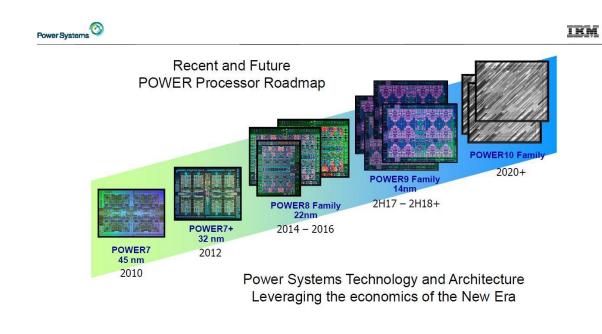




Source: Anandtech



#### **IBM POWER**


@ 2016 IBM Corporation

#### POWER9

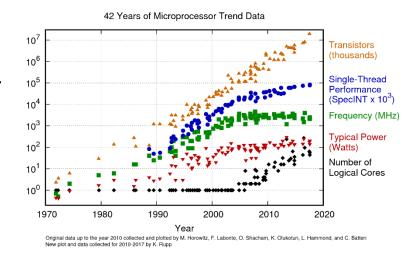
- Used in Summit, the fastest supercomputer
- 4 GHz
- Available with 4-way (up to 24 cores)
- First supporting PCle-Gen4
- CAPI 2.0 I/O to enable
  - Coherent user-level access to accelerators and I/O devices
  - Access to advanced memories
- NVLink to increase bandwidth to Nvidia GPUs
- 14nm FINFET process
- Product line with full support for RHEL/CENTOS7

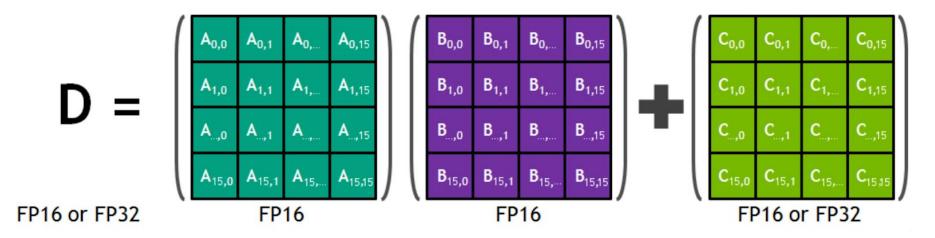
#### POWER10

- 10nm process
- Several feature enhancements
- First to support PCle Gen5






#### RISC-V and MIPS


- RISC-V is an open source ISA
  - To be used by some companies for controllers (Nvidia and WD), for FPGA (Microsemi), for fitness bands...
  - For the time being, not targeting the data center
  - Might compete with ARM in the mid term
  - Completely eclipsed MIPS
- MIPS
  - Considered dead



#### Discrete GPUs: current status

- GPU's raw power follows the exponential trend on numbers of transistors and cores
- New features appear unexpectedly, driven by market (e.g. tensor cores)
  - Tensor cores: programmable matrix-multiply-and-accumulate units
  - Fast half precision multiplication and reduction in full precision
  - Useful for accelerating deep learning training/inference





## Nvidia and AMD

Volta addressing the server market,
 Turing the gaming market

| Feature          | Volta (V100)                                                               | Turing (2080 Ti)                |  |
|------------------|----------------------------------------------------------------------------|---------------------------------|--|
| Process          | 12nm                                                                       | 12nm                            |  |
| CUDA cores       | yes                                                                        | yes                             |  |
| Tensor cores     | yes                                                                        | yes                             |  |
| RT cores         | NA                                                                         | yes                             |  |
| FP performance   | FP16: 28 TFLOPS<br>FP32: 14 TFLOPS<br>FP64: 7 TFLOPS<br>Tensor: 112 TFLOPS | Same, but<br>FP64: 1/32 of FP32 |  |
| Memory           | HBM2                                                                       | GDDR6                           |  |
| Memory bandwidth | 900 GB/sec                                                                 | 616 GB/sec                      |  |
| Multi-GPU        | NVLink 2                                                                   | NVLink 2/SLI                    |  |
| Applications     | AI, datacenter, workstation                                                | Al, workstation, gaming         |  |

- Vega 20
  - Directly aimed at the server world (Instinct MI50 and MI60)
- Evolution of Vega 10 using a 7nm process
  - more space for HBM2 memory, up to 32GB
  - 2x memory bandwidth
  - Massive FP64 gains
  - PCle Gen4
- Some improvements relevant for inference scenarios
  - Support for INT8 and INT4 data types
  - Some new instructions



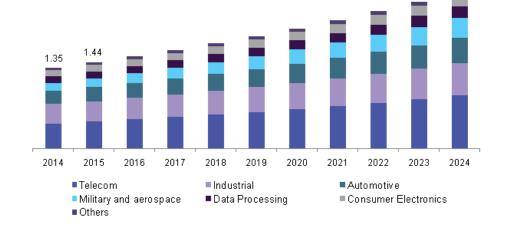
# **GPUs - Programmability**

- NVIDIA CUDA:
  - C++ based (supports C++14), de-facto standard
  - New hardware features available with no delay in the API
- OpenCL:
  - Can execute on CPUs, AMD GPUs and recently Intel FPGAs
  - Overpromised in the past, with scarce popularity
- Compiler directives: OpenMP/OpenACC
  - Latest GCC and LLVM include support for CUDA backend
- AMD HIP:
  - Interfaces to both CUDA and AMD MIOpen, still supports only a subset of the CUDA features
- GPU-enabled frameworks to hide complexity (Tensorflow)
- Issue is performance portability and code duplication

## GPUs in LHC experiments software frameworks

- Alice, O2
  - Tracking in TPC and ITS
  - Modern GPU can replace 40 CPU cores
- CMS, CMSSW
  - Demonstrated advantage of heterogeneous reconstruction from RAW to Pixel Vertices at the CMS HLT
  - ~10x both in speed-up and energy efficiency wrt full Xeon socket
  - Plans to run heterogeneous HLT during LHC Run3

- LHCb (online standalone) Allen framework: HLT-1 reduces 5TB/s input to 130GB/s:
  - Track reconstruction, muon-id, two-tracks vertex/mass reconstruction
  - GPUs can be used to accelerate the entire HLT-1 from RAW data
  - Events too small, have to be batched: makes the integration in Gaudi difficult


#### ATLAS

- Prototype for HLT track seed-finding, calorimeter topological clustering and antikt jet reconstruction
- No plans to deploy this in the trigger for Run 3



#### **FPGA**

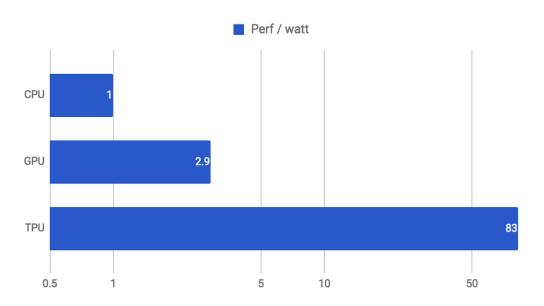
- Players: Xilinx (US), Intel (US), Lattice Semiconductor (US), Microsemi (US), and QuickLogic (US), TSMC (Taiwan), Microchip Technology (US), United Microelectronics (Taiwan), GLOBALFOUNDRIES (US), Achronix (US), and S2C Inc. (US)
- Market valued at USD 5 Billion in 2016 and expected to be valued at 10 Billion in 2023
- Growing demand for advanced driverassistance systems (ADAS), developments in IoT and reduction in time-to-market are the key driving factors



| Draces Technology    | 20 nm                                         |                       | 16 nm              |                                                                                         | 14 nm                                      |         |
|----------------------|-----------------------------------------------|-----------------------|--------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|---------|
| Process Technology   | Intel®                                        | Xilinx®               | Intel <sup>®</sup> | Xilinx®                                                                                 | Intel®                                     | Xilinx® |
| Top Performance Tier |                                               | Virtex®<br>UltraScale |                    | Virtex <sup>®</sup> UltraScale+ <sup>®</sup> Zynq <sup>®</sup> UltraScale+ <sup>®</sup> | Intel <sup>®</sup> Stratix <sup>®</sup> 10 |         |
| Mid Performance Tier | Intel <sup>®</sup> Arria <sup>®</sup>         | Kintex<br>UltraScale  |                    |                                                                                         |                                            |         |
| Low Performance Tier | Intel <sup>®</sup> Cyclone <sup>®</sup> 10 GX |                       |                    |                                                                                         |                                            |         |

Source: https://www.intel.com/content/www/us/en/programmable/documentation/mtr1422491996806.html#qom1512594527835\_\_fn\_soc\_variab\_avail\_xlx

# FPGA programming

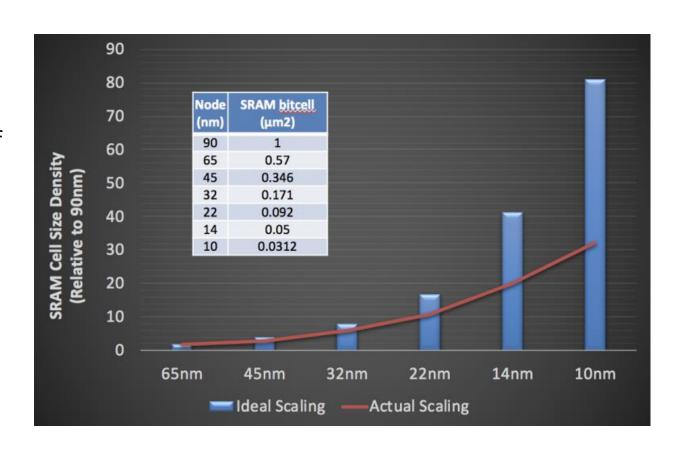

- Used as an application acceleration device
  - Targeted at specific use cases
    - Neural inference engine
    - MATLAB
    - LabVIEW FPGA
- OpenCL
  - Very high level abstraction
  - Optimized for data parallelism
- C / C++ / System C
  - High level synthesis (HLS)
  - Control with compiler switches and configurations
- VHDL / Verilog
  - Low level programming

- In HEP
  - High Level Triggers
    - https://cds.cern.ch/record/2647951
  - Deep Neural Networks
    - https://arxiv.org/abs/1804.06913
    - https://indico.cern.ch/event/703881/
  - High Throughput Data Processing
    - https://indico.cern.ch/event/669298/



#### Other Machine Learning processors and accelerators

- Intel Nervana Al Processor NNP-L-1000 (H2 2019-)
  - Accelerates AI inference for companies with high workload demands
  - Optimized across memory, bandwidth, utilization and power
  - Spring Crest 3-4x faster training than Lake Crest, introduced in 2017
  - Supports bfloat16
- Google TPU
  - Huge increase in perf/watt for ML compared to CPUs and GPUs
- Intel Configurable Spatial Accelerator (CSA)
  - Dataflow engines that explicitly map the parallelism of the code onto an array of processing, storage and switching elements
  - Heavily customized for specific applications

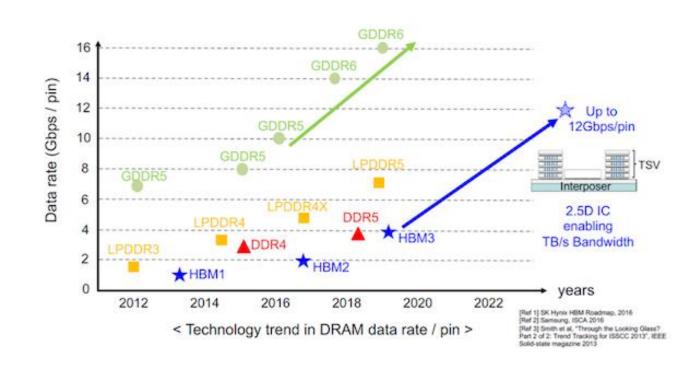



## **MEMORY TECHNOLOGIES**



# Static RAM (SRAM)

- On die memory on the CPU used for L1/L2/L3 cache
  - SRAM cell size not scaling with node
    - SRAM cache constitutes large fraction of area on modern CPUs
- Power consumption is an issue
- Applications driving larger caches
- No direct replacement in sight for L1/L2
- Alternate L3 cache technologies
  - eDRAM Used in IBM Power CPUs
  - STT-MRAM proposed as possible replacement



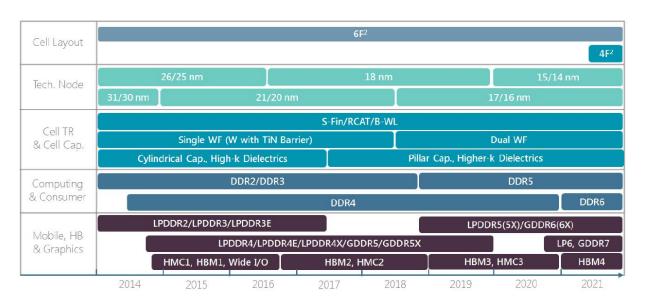

https://www.sigarch.org/whats-the-future-of-technology-scaling/



# Dynamic RAM (DRAM)

- Dominant standards continue to evolve
  - DDR4 -> DDR5
    - 3200MT/s -> 6400MT/s
    - 16Gb -> 32Gb chips
  - GDDR5 > GDDR5X
    - 14 Gbps/pin -> 16Gbps/pin
    - 8Gb -> 16Gb chips
  - HBM -> HBM2
    - 1 Gbps/pin -> 2.4 Gbps/pin
    - 4 die stack -> 12 die stack
    - 2Gb die -> 8Gb die
- Note memory latency remains mostly unchanged




(Youngwoo Kim, KAIST's Terabyte Labs) https://www.3dincites.com/2019/02/designcon-2019-shows-board-and-system-designers-the-benefits-of-advanced-ic-packaging/



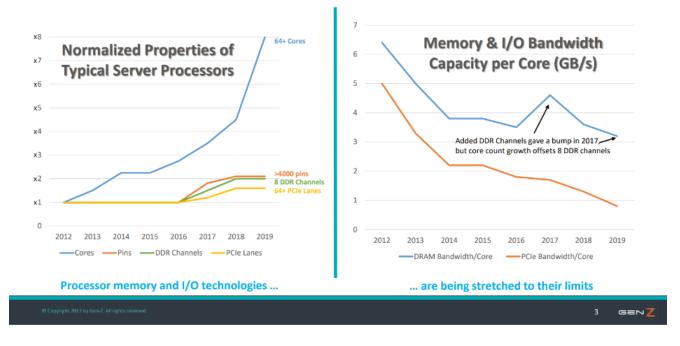
## DRAM Outlook

- Major vendors showing next generation chips (DDR5/GDDR6)
- Multiple technologies being investigated for future DRAM
- EUV lithography not needed for at least 3 more generations (Micron)
- Contract DRAM pricing fell ~30% in Q1 2019
- Pressure expected on DRAM prices thru 2019 due to additional production capacity coming online

#### **DRAM Technology Roadmap**



Q3/2018 updated


3 All content © 2018. TechInsights Inc. All rights reserved



https://www.techinsights.com/technology-intelligence/overview/technology-roadmaps/

# Performance gaps in memory hierarchy

#### **Compute-Memory Balance is Degrading**



MIND THE GAP

MIND THE GAP

NAND

DISK

https://www.opencompute.org/files/OCP-GenZ-March-2018-final.pdf

https://www.eetimes.com/author.asp?section\_id=36&doc\_id=1334088#



# Emerging technologies

- May eventually fill the gap
  - STT-MRAM between SRAM and DRAM (work in progress)
  - "Persistent Memory" in NVDIMM package for the DRAM/NAND gap
    - Low latency NAND (e.g. Z-NAND)
    - 3D XPoint (aka "Optane")
  - Technologies still in the lab
    - MRAM
    - NRAM
    - FeRAM
    - PCRAM
    - ReRAM

#### Technology Comparison

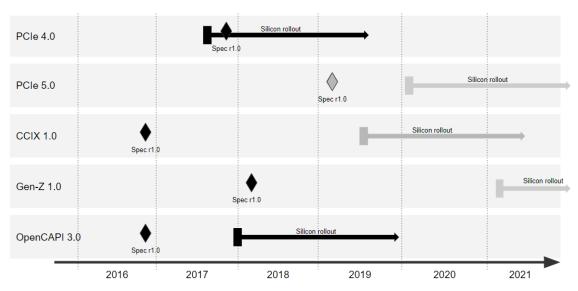


| Technology           | FeRAM   | MRAM       | ReRAM             | PCM       | DRAM      | NAND<br>Flash |
|----------------------|---------|------------|-------------------|-----------|-----------|---------------|
| Nonvolatile          | Yes     | Yes        | Yes               | Yes       | No        | Yes           |
| Endurance            | 1012    | 1012       | 106               | 108       | 1015      | 103           |
| WriteTime            | 100ns   | ~10ns      | ~50ns             | ~75ns     | I Ons     | I0μs          |
| Read Time            | 70ns    | I Ons      | I Ons             | 20ns      | I Ons     | 25µs          |
| Power<br>Consumption | Low     | Medium/Low | Low               | Medium    | Very High | Very High     |
| Cell Size (f²)       | 15-20   | 6-12       | 6-12              | 1-4       | 6-10      | 4             |
| Cost (\$/Gb)         | \$10/Gb | \$30-70/Gb | Currently<br>High | \$0.16/Gb | \$0.6/Gb  | \$0.03/Gb     |

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

14

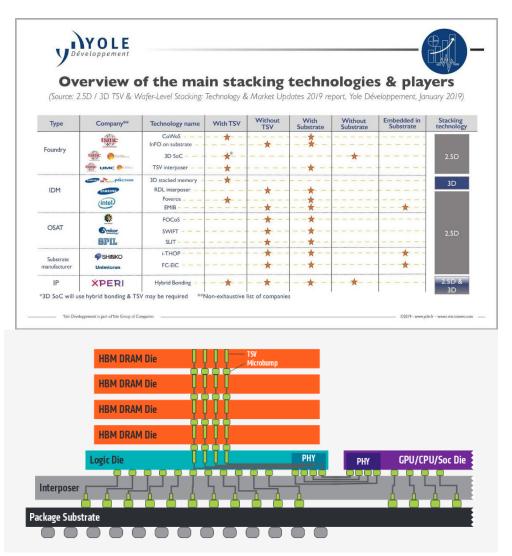
https://www.snia.org/sites/default/files/PM-Summit/2018/presentations/14\_PM\_Summit\_18\_Analysts\_Session\_Oros\_Final\_Post\_UPD ATED\_R2.pdf


## **SUPPORTING TECHNOLOGIES**



# Interconnect technology

- Increasing requirements on bandwidth and latency driving the development
  - E.g. moving data between CPU and GPU is often a bottleneck
  - Several standards competing (PCIe Gen4/5, CCIX, Gen-Z, OpenCAPI, CXL...)
- Proprietary technologies
  - NVLink (GPU-to-GPU, GPU-to-POWER9)
  - Ultra Path (Intel), CPU-to-CPU
  - Infinity Fabric (AMD), chiplet-to-chiplet


| Standard     | Physical Layer         | Topology               | Unidirectional Bandwidth     | Mechanicals   | Coherence                                                |
|--------------|------------------------|------------------------|------------------------------|---------------|----------------------------------------------------------|
| PCIe 4.0     | PCle PHY               | p2p switched           | 16Gb/s/lane up to x16        | PCle          | No                                                       |
| CCIX 1.0     | PCle PHY               | p2p switched           | 25Gb/s/lane up to x16        | PCle          | Full cache coherence between processors and accelerators |
| Gen-Z 1.0    | IEEE 802.3<br>PCIe PHY | p2p switched<br>meshed | 16/25/56Gb/s/lane up to x256 | SFF-TA        | Full cache coherence                                     |
| OpenCAPI 3.0 | IEEE 802.3             | p2p                    | 25Gb/s/lane up to x8         | In definition | Coherent access to system memory                         |
| PCle 5.0     | PCIe PHY               | p2p switched           | 32Gb/s/lane up to x16        | SSF-TA        | No                                                       |





# Packaging technology

- Traditionally a silicon die is individually packaged, but more and more CPUs package together more (sometimes different) dies
- Classified according to how dies are arranged and connected
  - 2D packaging (e.g. AMD EPYC): multiple dies on a substrate
  - 2.5D packaging (e.g. Intel Kaby Lake-G, CPU+GPU): interposer between die and substrate for higher speed
  - Intel Foveros, a 2.5D with an interposer with active logic (Intel "Lake Field" hybrid CPU)
  - 3D packaging (e.g. stacked DRAM in HBM), for lower power, higher bandwidth and smaller footprint
- Can alleviate scaling issues with monolithic CPU dies but at a cost, both financial and in power and latency





#### What next?

- We do not really know what will be there in the HL-LHC era (2026-2037)
- Some "early indicators" of what might come next
  - Several nanoelectronics projects might help in
    - Increasing density of memory chips
    - Reducing size of transistors in IC
  - Nanocrystals, silicon nanophotonics, carbon nanotubes, single-atom thick graphene film, etc.
  - https://www.understandingnano.com/nanotechnology-electronics.html



## Conclusions

- Market trends
  - Server market is increasing, AMD share as well
  - EUV lithography driving 7nm mass production
- CPU, GPUs and accelerators
  - AMD EPYC promising from a cost perspective
  - Nvidia GPUs still dominant due to the better software support
  - Recent developments for GPUs greatly favor inference workloads
  - FPGA market dominated by telecom, industry and automotive but there is also some HEP usage
- Memory technologies
  - SDRAM still the on-chip memory of choice, DRAM still for the main memory, no improvements in latency
  - NVDIMM emerging memory packaging for memory between DRAM and NAND flash (see next talk)
  - Other non-volatile memory technologies in development



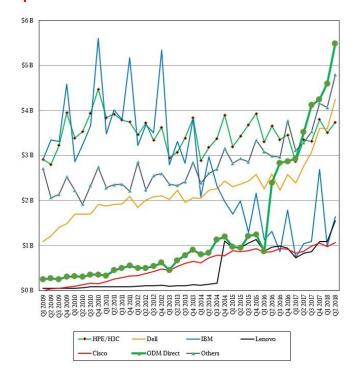
## Additional resources

- All subgroups
  - https://gitlab.cern.ch/hepix-techwatch-wg
- CPUs, GPUs and accelerators
  - Document (<u>link</u>)
- Memory technologies
  - Document (link)

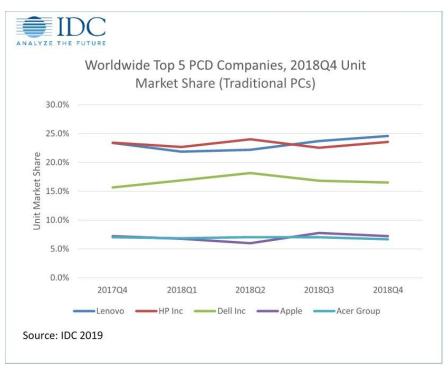


# Acknowledgments

 Special thanks to Shigeki Misawa, Servesh Muralidharan, Peter Wegner, Eric Yen, Andrea Chierici, Chris Hollowell, Charles Leggett, Michele Michelotto, Niko Neufeld, Harvey Newman, Felice Pantaleo, Bernd Panzer-Steindel, Mattieu Puel and Tristan Suerink


## **BACKUP SLIDES**



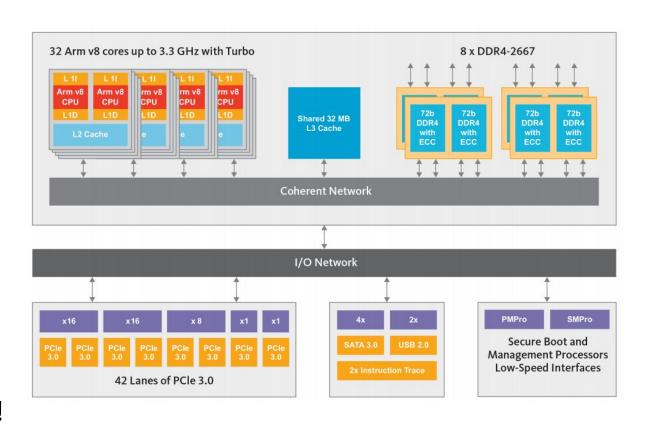

# Market share of technology companies

#### Server companies

# Worldwide Top 5 Server Companies, 2018Q3 Vendor Revenue Market Share 100% 80% 60% 40% 2017Q3 2017Q4 2018Q1 2018Q2 2018Q3 ■ 1. Dell Inc ■ 2. HPE / New H3C Group ■ 3. Inspur / Inspur Power Systems ■ 4. Lenovo ■ T5. IBM ■ T5. Cisco ■ ODM Direct ■ Others Source: IDC 2018



#### PC companies




 Worldwide server market increased 38%, year over year to \$23 billion during the third quarter of 2018



# eMAG, Graviton

- eMAG from Ampere is a V8 64 bit single socket SoC meant to compete with Xeon processors
  - Available in 16 and 32 cores
  - Eight DDR4 memory channels
  - 42 PCI-E Gen3 lanes
  - Using the TSMC 16nm FinFET+ process
- Graviton is available only via AWS
  - Could be the beginning of a new trend among hyperscalers, avoiding commercially available processors
  - not a good thing for HEP if it results in higher CPU prices due to drop of sales!

