

Analysis today

Paul Laycock

Introduction to the Data Analysis Working Group

- Aim make publication of physics results more efficient, eliminate monotonous and laborious tasks from physics analysis
- 1st priority capture the requirements of analysis by direct consultation:
 - https://indico.cern.ch/event/782504/
- Second 1st priority survey work of technology pioneers:
 - https://indico.cern.ch/event/789007/
- 18 excellent talks which the three DAWG convenors will try to summarise
 - What have we learned? What can we improve? How bad is it?

- Many thanks to the speakers, most of the material in this talk originated there
 - Credit goes to the original presentations (not always credited here, sorry!)

What is analysis?

A question of many scales

Wildly different Challenges!

Note: structure given the numerous "trigger lines" with different requirements

Eduardo Rodrigues

HSF Data Analysis WG Meeting, CERN, 23rd Jan. 2019

6000

A question of many scales

Note: structure given the numerous "trigger lines" with different requirements

Eduardo Rodrigues

HSF Data Analysis WG Meeting, CERN, 23rd Jan. 2019

Analysis workflows

CMS data-taking and detector simulation Production of official CMS datasets Reduction to (flat) analysis ntuple Compute counts and histograms Statistical inference Result

- Tend to focus on heavy lifting here rather than the final stages
 - More on statistical inference et al in Andrea's talk

Repeated heavy lifting

Data reduction trains - Fact and fiction

CMS nano-AOD ~1kB/event

expected to cover > 50% of analyses

ATLAS derivations

- 2014 (top): small efficient data format
- 2028 (right): more than half the storage

Data reduction trains - Fact and fiction

ALICE analysis trains

ALICE successfully driving analysis trains over AOD input

Going nano

Event Summary Data (ESD)

Analysis Object Data (AOD)

Nano ROOT TTrees

ALICE plans to go nano like CMS, while ATLAS aiming for 10-50 kB/event

Analysis workflows - best practice?

Event Rate (events/s)

High Level Trigger

- Turbo stream analysis (data scouting): reco and calibration done once in HLT no more reprocessing!
 - in reality for LHCb, two HLT passes
 - TDAQ to record events to a big buffer
 - then prompt calibration
 - then second pass for data reduction
- Q. How much physics bandwidth can go this route for other experiments?
- Centrally produced nano-format: no more reinventing the wheel for producing a data analysis format
 - in reality, cannot accommodate all analyses, BUT important to use where it is possible (maybe even for ATLAS)
- Q. How much physics bandwidth can go this route for all experiments?

Where: Power vs control

Grid

- Portability
- Dataset sharing
- Dataset access
- Reliability
- Local cluster
 - Dataset access
 - Reliability
 - Portability
 - Dataset sharing

How easy for collaborator B to use collaborator A's submission scripts?

How easy for collaborator B to use collaborator A's job outputs?

How easy for collaborator A to use own job outputs?

How long before job outputs 100% available?

Wherever: Power and control?

Grid

- Portability
- Dataset sharing -
- Dataset access
- Reliability
- Local cluster
 - Dataset access
 - Reliability
 - Portability
 - Dataset sharing

Hiding the "how" is a common theme

see declarative analysis in Andrea's talk

Do you use notebooks, whether standard Jupyter notebooks, or within JupyterLab?

146 responses

Analysis platforms

LSST Science Platform

Jupyter Notebooks

Web APIs

- Data access via IVOA-standard protocols
 - Same interfaces that support other aspects

See also Lukas's talk from Tuesday

Belle II analysis software stack

Analysis of the *n*-tuples is done with Python:

- Pandas and numpy
- root_pandas or uproot to load ROOT files
- scikit-learn or basf2 MVA package for MVA methods
- matplotlib for plots
- convert *n*-tuples to hdf5 files (these are loaded \sim 10 times faster)
- data analysis in *jupyter notebooks*

Why Python?

- Well documented!
- Easy to integrate into the rest of the analysis
- Modern and nice interface...

Belle II - best practice analysis code

UI

A simple example

```
import basf2
from modularAnalysis import inputMdst, reconstructDecay, fitVertex, variablesToNtuple
from stdCharged import stdPi
from stdPhotons import stdPhotons
mypath = basf2.Path()
# configure modules
inputMdst("default", basf2.find_file('analysis/tests/mdst.root'), path=mypath)
stdPi("good", path=mypath)
stdPhotons("good", path=mypath)
reconstructDecay('rho0:myrhos -> pi+:good pi-:good', '0.5 < M < 1.0', path=mypath)</pre>
fitVertex('rho0:myrhos', path=mypath)
reconstructDecay('B0:myBs -> rho0:myrhos gamma:good', '5.0 < M < 6.0', path=mypath)
# output modules
momenta = ['px', 'py', 'pz']
variablesToNtuple('B0:myBs', momenta, path=mypath)
basf2.process(mypath)
```

DESY. | High-level analysis software for the Belle II experiment | S Cunliffe 13.02.2019

BROOKHAVEN NATIONAL LABORATORY

Page 11

Beyond analysis functionality

SUSYTools @ Hass AbouZeid

Configuration diff
High-level analysis
comparison

EleBaseline.Pt	10000.	10000.	7000.
EleBaseline.Eta	2.47	2.47	2.47
EleBaseline.ld	LooseAndBLayerLLH	LooseAndBLayerLLH	VeryLooseLLH
EleBaseline.CrackVeto	false	true	false
EleBaseline.z0	0.5	0.5	
Ele.Et	25000.	10000.	20000.
Ele.Eta	2.47	2.47	2.47
Ele.CrackVeto	false	true	false
Ele.lso	Gradient	FCTight	Gradient

Analysis 1

Default

CI pipelineCarefully control code

Reference histogram updated automatically every night

Analysis 2

GUI Overkill

Observations / Questions

- Analysis is diverse, but we see recurring themes and solutions
- Reducing I/O for heavy lifting:
- Trains an accepted solution, can more workflows use this concept?
- Common nano-AOD centrally produced, less reinventing the wheel on format
 - Q. How much bandwidth can go this route?
- Turbo stream calibrate once
 - Q. How much bandwidth can go this route? How strong is the physics case to justify not doing that?
- Convergence on Jupyter notebooks as analysis platform, hiding the how is good
- Trend towards declarative analysis, especially for LHCb/Belle II
 - Does anything prevent other experiments?
- Addressing systematics is still a challenge, see Andrea's talk
 - Can we attack (some of) this as a community? What is best practice?
 - Not covered Monte Carlo

But first, the next talk

Winter is comin'

