Storage modeling

Markus W. Schulz Andrea P. Sciabà

Outline

- Current activities and plans
 - Relationship with DOMA Access
- Alternative storage models
 - Site caches
 - Experimental measurements
 - Modeling
 - Dealing with data loss
- Impact of latency and bandwidth limitations
 - Measurements and emulation
- Data popularity and storage utilization
 - Access frequencies, lifetime of data replicas

Current activities and plans

- Last summer we started to investigate the feasibility of caches and the impact of latency on workloads, and created tools
- Work continued and broadened by our WG
 - Now relevant work at a much larger scale by many players is done in the framework of DOMA
 - Example: https://indico.cern.ch/event/769502/
 - Please take a look at what has been presented at DOMA-access for an overview
- Should we continue independent work in this area or link this directly to DOMA activities?
 - In any case results and conclusions have to be presented to both activities
 - Discussions on investigations will find a larger audience of storage experts at DOMA meetings
 - The impact on cost is better addressed at the cost model meetings
 - Can it be agreed? Voice your disagreement in case :)

Example: LMU

- Only one of many detailed measurements
- Also studied load on cache server etc.
- Low end hardware used (2012 server)

Processing from different sites

Derivation Jobs (≈ 3MB/s) - process 500 Events

- → Differences for direct I/O and cached visible for far away sites
- → Local XCache (on each node) can serve as alternative to TTreeCache

7/14

Alternative storage models (Data Lake Strawman)

- Studies of the impact of data losses in systems with low or no local data redundancy
- Based on the Data Lake strawman model
 - Based on CMS analysis model
 - Spreadsheet to evaluate different scenarios, usag patterns, replication rates
 - https://docs.google.com/spreadsheets/d/12bmAPWUzsZrDtptJTfGyR-Rw8wPv5D8U3tb NSwDNbJo/edit?usp=sharing
 - Part of the Data Access on a Data Lake straw man model document
- These studies are best done within DOMA
- Impact of cost has to be taken into account for our working group.

Example from DOMA access

- Example: Disk fails, data is replicated from other sites (at low rate)
 - Based on known failure rates and the straw man model (see Xavier's presentation)
 - Can't be understood without the document and the spreadsheet
 - Impact is minimal, compared to normal rate of failed jobs.

Total Number of files on site	66666666
number of files accessed during 1 hour [1/h]	277778
fraction of total number of files accessed in an hour [1/h]	0.0042
fractional size of the failed disk	0.0001
number of files accessed on the failed disk per hour [1/h]	28
files missed during locating replicas	10
files missed during replication (files are gradually moved)	77
total number of files missed during recovery (6h)	87
total number of files accessed during recovery	1646090
Fraction of files missed during reco period	0.000053
Above in ‰	0.53
Average file miss rate in ‰	0.036

Example 1: effect of latency and the impact of XCache

- Ingredients
 - Reference workloads
 - Corentin's tool (see Serhan's presentation)
 - Tool for latency, bandwidth and memory restrictions
 - XCache instances on standard CERN nodes
- Workload is run on a node, reading data from another node
 - With added latency, without a cache
 - With added latency and a cache
 - Results are preliminary, but everything indicates that Xcache is very good at latency hiding
 - Even when data is read for the first time/once!

Example: CMS RECO and ATLAS digireco

Example 2: simulating a site cache at CMS sites

- Inspired by previous studies on ATLAS popularity data
- Ingredients
 - CMSSW popularity data
 - Site, file name, file size, access time
- Data provided by ATLAS and CMS is much richer than required by these studies
 - Preprocessing is required in all cases
 - Will propose a common intermediate format for people doing studies

Example 2: simulating a site cache at CMS sites

- Difference between Analysis and Production
- Production files have very few re-reads
 - But can push analysis data out of the cache
 - Hit rate independent from size
- Therefore:
 - One larger cache for analysis data
 - One smaller cache for the production files
 - Still provides latency hiding
 - Big enough to cover the load of a few days (for failed jobs)

Example 2: frequency and number of file accesses

- For input files registered in the DBS, measured
 - distribution of number of accesses
 - Files read / sec (day by day)

Example 3: ATLAS data popularity studies

- ATLAS studies started last year
 - Based on half a year of RUCIO access data
 - These traces do not cover the access to final analysis product (ntuples)
 - Started to look also at staging traces
 - In different (better) format
 - Combining will be difficult
- All work based on the current analysis model
 - Which is quite different from the future model
- ATLAS is discussing a new model
 - https://indico.cern.ch/event/769501/
 - In this model new DAOD formats are introduced (PHYS/PHYSLITE)
 - Smaller, less versions, DAOD production from TapeCarousel

Follow Up on Cache Studies with ATLAS data

- Based on 1 month of logs
- Picked PragueLCG2 as a "typical" T2
 - o 32k cores, 6 PB
- Simulated cache
 - Hit rate/ cache size
 - Repeated later with data-served-from-cache/total-data-read (small difference)
- AOD+DAOD+HITS = 87% of data
 - AOD+DAOD 56%
- Simulated caches for different data types
 - AOD + DAOD: 61 % @ 256 TByte
 - O HITS: 90% @16 TByte

Additional Work:

- David Smith started work on a stress test system for caches
 - Using access records from logs
 - Using profiles from measured workloads
- Goal is to understand what performance is needed by a cache node to handle realistic site loads
 - From this cost for caches can be derived.
 - Based on site cost models
 - Human effort still to be evaluated
 - Feedback from sites using caches needed (setup/ops)
 - Since Xcache has been containerised this shouldn't be too hard...

Some work on global data access patterns

- ATLAS data access logs
- Data type (AOD/DAOD/HITS...)
 - as expected
- Looked at "impact" = number of accesses * size
- Looked at many different aspects
 - Time between access
 - Number of sites
 - Time between first and last access
 - Number of accesses
 - Correlations....

Some examples: AODs

AODs

Same for DAODs, HITS....

- And many more....
- What could be learned?
 - Data isn't accessed very often
 - Most likely to be re-read within days
 - Only on log scale structures become visible
- What is missing
 - A lot
 - 6 months isn't long enough!
 - Need to add staging and deletion information
 - To measure "active" vs "passive" time
 - Looking for access rate/absolute time → seasons etc.

Similar studies have been done for CMS Data

- Andrea Sciaba
- CMS data contains all accesses
- To be discussed

Data Access and popularity study at PIC

- PIC Tier-1 is doing an analysis of the CMS data access and popularity based on dCache billingDB
- Looking into file accesses:
 - Accesses from remote or local IPs
 - Data type (MC, Data, and the type of data accessed: RAW, RECO, AOD)
 - Time since creation to first access number of accesses time from last access to deletion
 - Bytes transferred from accesses
 - Usage of the disk space (files accessed as compared to total files stored, as a function of a sliding window)
- Millions of files accessed per month complex analysis
- Once the procedures are setup, there is the plan to compare to a Tier-2 (CIEMAT, Madrid)

Summary

- Ours and DOMA access studies indicate that caches can have a huge impact on how storage is organized
- Have to derive the cost impact from the measurements
 - In terms of storage and compute resources, this is straightforward
 - Network cost is more complicated, due to the step function when current bandwidth limits are reached
 - Operation costs differences between managed storage and caches are difficult to estimate at the moment
 - With more and more "hands-on" experience it will become feasible
- Data formats and analysis strategies are currently in flux
 - Focus on developing flexible approaches rather than very detailed analyses